Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Isotopic fractionation in wild and captive European spiny lobsters (Palinurus elephas)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

Differences in tissue specific fractionation have important practical implications for ecological studies. We have examined isotopic fractionation δ13C and δ15N among four different tissues in the spiny lobster Palinurus elephas (Fabricius, 1787). Two sets of individuals differing on diet-quality (captive animals with monospecific diet and wild lobsters) were studied to determine the best tissue to be used as a proxy of feeding ecology: muscles of the pleon, muscles of the legs, telson, and hemolymph. We observed significant differences in isotopic fractionation δ13C and δ15N among the analyzed tissues. In both captive and wild specimens leg muscle was the most δ15N enriched tissue, followed by pleonal muscle, hemolymph, and telson. For δ13C the sequence in isotopic discrimination was pleonal muscle > leg muscle > hemolymph ≈ telson. Lower intra-individual variability was observed in captives compared to wild individuals, as expected from a constant diet. Finally, we conclude that leg muscle is the best tissue for studying P. elephas trophism since it presents the lowest variability at isotopic level for N. The sampling of leg muscle, a regenerating tissue, is therefore suitable as a non lethal technique for trophic assessment at lobsters.

Affiliations: 1: Centro Oceanográfico de Baleares-Instituto Español de Oceanografía, Muelle de Poniente s/n 07015, Palma de Mallorca, Spain


Full text loading...


Data & Media loading...

1. Balss H. 1922. "Crustacea VII: Decapoda Brachyura (Oxyrhyncha und Brachyrhyncha) und geographische Übersicht über Crustacea Decapoda", pp. 69- 110. In, Michaelsen W. (ed.), Beiträge zur Kenntnis der Meeresfauna Westafrikas. Friederichsen and Co., Hamburg.
2. Blanco A. , Deudero S. , Box A. . 2009. "Isotopic fractionation among muscle and scales in marine fishes Dentex dentex, Argyrosomus regiusand Xyrichtys novaculaas non-lethal approximation to fish trophic assessment at Mediterranean waters". Rapid Communications in Mass Spectrometry Vol 2315: 2321- 2328.
3. Bodin N. , Leloch F. , Hily C. . 2007. "Effect of lipid removal on carbon and nitrogen stable isotopes in crustacean tissues". Journal of Experimental Marine Biology and Ecology Vol 341: 168- 175.
4. Cabanellas-Reboredo M. , Deudero S. , Blanco A. . 2009. "Stable-isotopes signatures δ 13C and δ 15N of different tissues of Pinna nobilisLinnaeus, 1758 Bivalvia: isotopic variations among tissues and between seasons". Journal of Molluscan Studies Vol 75: 343- 349.
5. Dana J. D. 1850. "Synopsis generum crustaceorum ordinis “Schizopoda”". American Journal of Science Vol 9: 129- 133.
6. De Niro M. , Epstein S. . 1978. "Influence of diet on the distribution of carbon isotope in animals". Geochimica et Cosmochimica Acta Vol 42: 495- 506.
7. Deudero S. , Cabanellas-Reboredo M. , Blanco A. , Tejada S. . 2009. "Stable isotope fractionation in the digestive gland, muscle and gills tissues of the marine mussel Mytilus galloprovincialis ". Journal of Experimental Marine Biology and Ecology Vol 368: 181- 188.
8. Deudero S. , Box A. , Alós A. , Arroyo N. L. , Marbà N. . 2011. "Functional changes due to invasive species: food web shifts at shallow Posidonia oceanicaseagrass beds colonized by the alien macroalga Caulerpa racemosa ". Estuarine, Coastal and Shelf Science Vol 93: 106- 116.
9. Fabricius J. C. 1787. Mantissa insectorum sistens eorum species nuper detectas adiectis characteribus genericis, differentiis specificis, emendationibus, observationibus. Ioh. Christ. Fabricii 1, 348 pp.
10. Goñi R. , Latrouite D. . 2005. "Review of the biology, ecology and fisheries of Palinurusspp. species of European waters: Palinurus elephasFabricius, 1787 and Palinurus mauritanicusGruvel, 1911". Cahiers de Biologie Marine Vol 46: 127- 142.
11. Goñi R. , Quetglas A. , Reñones O. . 2001. "Diet of the spiny lobster Palinurus elephasDecapoda: Palinuridea from the Columbretes Island Marine Reserve north-western Mediterranean". Journal of the Marine Biological Association of the UK Vol 81: 347- 348.
12. Hobson K. A. , Schell D. M. , Renouf D. , Noseworthy E. . 1996. "Stable carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: implications for dietary reconstructions involving marine mammals". Canadian Journal of Fisheries and Aquatic Sciences Vol 533: 528- 533.
13. Hutton F. W. 1875. "Descriptions of two new species of crustaceans from New Zealand: Sesarma pentagonaand Jasus edwardsii ". Transactions and Proceedings of the New Zealand Institute Vol 7: 279- 280.
14. Juanes F. , Smith L. . 1995. "The ecological consequences of limb damage and loss in decapod crustaceans: a review and prospectus". Journal of Experimental Marine Biology and Ecology Vol 193: 197- 223.
15. Martínez del Rio C. , Wolfi N. , Carletoni A. , Gannes L. . 2009. "Isotopic ecology ten years after a call for more laboratory experiments". Biological Reviews Vol 84: 91- 111.
16. McClelland J. W. , Montoya J. P. . 2002. "Trophic relationships and the nitrogen isotopic composition of amino acids in plankton". Ecology Vol 83: 2173- 2180.[2173:TRATNI]2.0.CO;2
17. McCutchan J. , Lewis W. , Kendall C. , McGrath C. . 2003. "Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur". Oikos Vol 102: 378- 390.
18. Pinnegar J. K. , Polunin N. V. C. . 1999. "Differential fractionation of δ 13C and δ 15N among fish tissues: implications for the study of trophic interactions". Functional Ecology Vol 13: 225- 231.
19. Schimmelmann A. 2011. "Carbon, nitrogen and oxygen stable isotope ratios in chitin". Topics in Geobiology Vol 34: 81- 103.
20. Schmidt K. , McClelland J. , Mente E. , Montoya J. , Atkinson A. , Voss M. . 2004. "Trophic-level interpretation based on δ 15N values: implications of tissue-specific fractionation and amino acid composition".  Marine Ecology Progress Series Vol 266: 43- 58.
21. Suring E. , Wing S. . 2009. "Isotopic turnover rate and fractionation in multiple tissues of red rock lobster Jasus edwardsiiand blue cod Parapercis colias: consequences for ecological studies". Journal of Experimental Marine Biology and Ecology Vol 370: 56- 63.
22. Tieszen L. L. , Boutton T. W. , Tesdahl K. G. , Slade N. A. . 1983. "Fractionation and turnover of stable carbon isotopes in animal tissues: implications for 13C analysis of diet". Oecologia Vol 57: 32- 37.
23. Valenciennes A. 1847. "Poissons". “Voyage dans l’Amérique Meridionel” d’Orbigny Vol 2: 1- 9.
24. Waddington K. , MacArthur L. . 2008. "Diet quality and muscle tissue location influence consumer-diet discrimination in captive-reared rock lobsters Palinurus cygnus ". Marine Biology Vol 154: 569- 576.

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation