Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Visualisation of the copepod female reproductive system using confocal laser scanning microscopy and two-photon microscopy

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

We examined mating behaviour in the harpacticoid copepod Tisbe battagliai Volkmann-Rocco, 1972, in particular the process of delivering spermatophore seminal contents to the female urosome. Labelling using 4′6′ diamidino-2-phenylindole (DAPI) coupled with two-photon confocal laser scanning microscopy successfully visualised the spermatophore and female internal reproductive system. Sections of the female urosome were imaged to examine seminal fluid stores. The female tissues were found to auto-fluoresce as red emission under green excitation, requiring no additional tissue labelling. DAPI-labelled seminal fluid stores were identified within the female reproductive system. The details observed agreed with previous descriptions of copepod reproductive anatomy and of spermatophores. Specimens cultured under pH 8.10 and a simulated ocean acidification scenario (pH 7.67) were compared for changes in reproductive anatomy and spermatophore size and site attachment. No differences were observed in spermatophore attachment or the female reproductive system but spermatophore size was reduced significantly at pH 7.67 compared with pH 8.10. This size reduction was, however, in proportion to an overall reduction in female body size at reduced pH. Confocal microscopy is shown here to be a valuable tool to investigate detailed reproductive processes in copepods.

Affiliations: 1: 3Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, England, UK; 2: 2School of Marine Science and Technology, Ridley Building, Claremont Road, Newcastle University, Newcastle upon Tyne NE1 7RU, England, UK


Full text loading...


Data & Media loading...

1. Blades-Eckelbarger P. I. , Youngbluth M. J. . 1984. "The ultrastructure of oogenesis and yolk formation in Labidocera aestiva(Copepoda: Calancoida)". Journal of Morphology Vol 179: 33- 46.
2. Butcher R. W. 1959. An Introductory Account of the Smaller Algae of British Coastal Waters. Part I: Introduction and Chlorophyceae, Vol Vol. Ser. IV (Part 1). Ministry of Agriculture Fisheries and Food, Great Britain, 74 pp.
3. Buttino I. , Ianora A. , Carotenuto Y. , Zupo V. , Miralto A. . 2003. "Use of the confocal laser scanning microscope in studies on the developmental biology of marine crustaceans". Microscopy Research and Technique Vol 60: 458- 464.
4. Denk W. , Strickler J. H. , Webb W. W. . 1990. "Two-photon laser scanning fluorescence microscopy". Science Vol 248: 73- 76.
5. Eckelbarger K. J. , Blades-Eckelbarger P. I. . 2005. "Oogenesis in calanoid copepods". Invertebrate Reproduction and Development Vol 47: 167- 181.
6. Egilsdottir H. , Spicer J. I. , Rundle S. D. . 2009. "The effect of CO 2acidified seawater and reduced salinity on aspects of the embryonic development of the amphipod Echinogammarus marinus(Leach)". Marine Pollution Bulletin Vol 58: 1187- 1191.
7. Ellis R. P. , Bersey J. , Rundle S. D. , Hall-Spencer J. M. , Spicer J. I. . 2009. "Subtle but significant effects of CO 2acidified seawater on embryos of the internal snail, Littorina obtusata ". Aquatic Biology Vol 5: 41- 48.
8. Fahrenbach W. H. 1962. "The biology of a harpacticoid copepod". La Cellule Vol 62: 303- 376.
9. Fitzer S. C. , Caldwell G. S. , Close A. J. , Clare A. S. , Upstill-Goddard R. C. , Bentley M. G. . In press. "Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation". Journal of Experimental Marine Biology and Ecology.
10. Harrington C. C. , Atwood H. L. . 1995. "“Satellite Cells” and nerve terminals in the crayfish opener muscle visualized with fluorescent dyes". Journal of Comparative Neurology Vol 361: 441- 450.
11. Havenhand J. N. , Buttler F. R. , Thorndyke M. C. , Williamson J. E. . 2008. "Near-future levels of ocean acidification reduce fertilisation success in a sea urchin". Current Biology Vol 18: R651- R652.
12. Hilton I. F. 1931. "The oogenesis of Calanus finmarchicus ". Quarterly Journal of Microscopical Science Vol 74: 193- 222.
13. Hopkins C. C. E. 1978. "The male genital system and spermatophore production and function in Euchaeta norvegicaBoeck (Copepoda: Calanoida)". Journal of Experimental Marine Biology and Ecology Vol 35: 197- 231.
14. Jackson J. B. C. 2010. "The future of the oceans past". Philosophical Transactions of the Royal Society B Vol 365: 3765- 3778.
15. Katona S. K. 1975. "Copulation in the copepod Eurytemora affinis(Poppe, 1880)". Crustaceana Vol 28: 89- 95.
16. Klaus A. V. , Schawaroch V. . 2006. "Novel methodology utilizing confocal laser scanning microscopy for systematic analysis in arthropods (Insecta)". Integrative and Comparative Biology Vol 46: 207- 214.
17. Kurihara H. , Shirayama Y. . 2004. "Effects of increased atmospheric CO 2on sea urchin early development". Marine Ecology Progress Series Vol 274: 161- 169.
18. Kurihara H. , Shimode S. , Shirayama Y. . 2004. "Sub-lethal effects of elevated concentration of CO 2on planktonic copepods and sea urchins". Journal of Oceanography Vol 60: 743- 750.
19. Kurihara H. , Lee S. , Brown R. L. , Monroe W. . 2009. "Use of confocal laser scanning microscopy in systematics of insects with a comparison of fluorescence from different stains". Systematic Entomology Vol 34: 10- 14.
20. Mayor D. J. , Matthews C. , Cook K. , Zuur A. F. , Hays S. . 2007. "CO 2-induced acidification affects hatching success in Calanus finmarchicus ". Marine Ecology Progress Series Vol 350: 91- 97.
21. Michels J. 2007. "Confocal laser scanning microscopy: using cuticular autofluorescence for high resolution morphological imaging in small crustaceans". Journal of Microscopy Vol 227: 1- 7.
22. Morita M. , Suwa R. , Iguchi A. , Nakamura M. , Shimada K. , Sakai K. , Suzuki A. . 2010. "Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates". Zygote Vol 18: 103- 107.
23. Niehoff B. 2007. "Life history strategies in zooplankton communities: the significance of female gonad morphology and maturation types for the reproductive biology of marine calanoid copepods". Progress in Oceanography Vol 74: 1- 47.
24. Oginsky M. F. , Rodgers E. W. , Clark M. C. , Simmons R. , Krenz W.-D. C. , Baro D. J. . 2010. "D 2receptors receive paracrine neurotransmission and are consistently targeted to a subset of synaptic structures in an identified neuron of the crustacean stomatogastric nervous system". Journal of Comparative Neurology Vol 518: 255- 276.
25. Parke M. 1949. "Studies on marine flagellates". Journal of the Marine Biological Association of the United Kingdom Vol 28: 255- 288.
26. Parker L. M. , Ross P. M. , O’Connor W. A. . 2009. "The effect of ocean acidification and tempertature on the fertilisation and embryonic development in the Sydney rock oyster Saccostrea glomerata(Gould 1850)". Global Change Biology Vol 15: 2123- 2136.
27. Sarmiento J. L. , Gruber N. . 2002. "Sinks for anthropogenic carbon". Physics Today Vol 55: 30- 36.
28. Volkmann-Rocco B. 1972. " Tisbe battagliain. sp. a sibling species of Tisbe holothuriae(Copepoda, Harpacticoida)". Archivio di Oceanografia e Limnologia Vol 17: 259- 273.
29. Zirbel M. J. , Miller C. B. , Batchelder H. P. . 2007. "Staging egg development of marine copepods with DAPI and PicoGreen ® ". Limnology and Oceanography Methods Vol 5: 106- 110.

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation