Cookies Policy
X
Cookie Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Proteoglycan occurrence in gastrolith of the crayfish Cherax quadricarinatus (Malacostraca: Decapoda)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Buy this article

Price:
$30.00+ Tax (if applicable)
Add to Favorites

Biomineralized structures are hybrid composites formed and stabilized by the close interaction of the organic and the inorganic phases. Crayfish are good models for studying biomineralization because they develop, in a molting-mineralization cycle, semi-spherical mineralized structures referred to as gastroliths. The organic matrix of these structures consists of proteins, polysaccharides, and lipids. Chitin is the main polysaccharide and is concentrically arranged as fibrous chitin-protein lamellar structures. Although several proteins and low-molecular weight phosphorylated components have been reported to be involved in gastrolith mineralization, the occurrence and role of proteoglycans have not been fully documented. We have immunologically analyzed the proteoglycans in gastrolith matrix extracts and histological cross-sections of the gastrolith, and the forming epithelium during premolt and postmolt stages. The results indicate that gastroliths contain proteoglycans that have dermatan-, chondroitin-4- and 6-, and keratan sulfate glycosaminoglycans. These macromolecules are closely associated with the mineral phase of the gastrolith and are easily removed by decalcification procedures. There is also evidence to indicate that epithelial secretion of some of these molecules is temporally regulated during the molting cycle. However, the precise role of these macromolecules in the calcification and stabilization of the amorphous calcium carbonate phase of the gastrolith remains to be established.

Loading

Article metrics loading...

/content/journals/10.1163/193724012x649804
2012-07-07
2015-01-28

Affiliations: 1: 1Faculty of Veterinary Science, University of Chile, Santiago, Chile; 2: 2Biogéosciences, UMR CNRS 6282, Université de Bourgogne, 6 Bd. Gabriel, 21000 Dijon, France; 3: 3UPSP PROXISS, Département Agronomie Environnement, AgroSupDijon, Dijon, France

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Create email alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Name:*
    Email:*
    Your details
    Name:*
    Email:*
    Department:*
    Why are you recommending this title?
    Select reason:
     
     
     
     
    Other:
     
    Journal of Crustacean Biology — Recommend this title to your library

    Thank you

    Your recommendation has been sent to your librarian.

  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation