Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here


No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Journal of Crustacean Biology

ABSTRACT Oxygen consumption rates (MO2) were measured for 3 species of cave-dwelling crayfishes, Procambarus pallidus, Procambarus erythrops. and Troglocambarus maclanei. The MO2 values for the cave-dwelling species were compared to MO2 values measured previously over a broad range of masses in the surface-dwelling crayfish Pacifastacus leniusculus. MO2 values reported for other surface crayfish are not different from Pacifastacus leniusculus of the same mass. The MO2 values for the cave species were all significantly below the MO2 values for the surface crayfish of the same mass, indicating that the cave crayfish have reduced aerobic metabolism. Critical oxygen tensions or Pes (the ambient oxygen partial pressure (PO2) at which resting MO2 is no longer constant, but begins to decrease) measured for 2 of the cave species (P. pallidus, 29 Torr; T. maclanei, 25 Torr) were lower than those reported in the literature for surface species (35-40 Torr). The third cave species, P. erythrops, showed no decrease in MO2 down to an ambient PO2 of 20 Torr. The PO2 measured in water samples taken from 6 of the same submerged caves in which the crayfish were found showed great variability (mean = 71 Torr, range = 26-145 Torr), but was not lower than the PO2 of surface water samples taken outside of the caves. This suggests that low oxygen availability may not have been the primary selective force in the evolution of reduced oxygen uptake rates in cave crayfish.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Journal of Crustacean Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation