Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Distribution of cave-dwelling Aegla spp. (Decapoda: Anomura: Aeglidae) from the Alto Ribeira karstic area in southeastern Brazil based on geomorphological evidence

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

In this study, we assess the main ecological and evolutionary causes of the current distribution of cave dwelling species of Aegla from the Alto Ribeira karstic province, southeastern Brazil. Based on field surveys conducted over several years and on examination of scientific collections, we discuss herein how processes of colonization, dispersal, and vicariance could have resulted in the present pattern of distribution of these species. Given the extensive area of continuous limestone lenses interrupted by insoluble rocks, the distribution of aeglids from Alto Ribeira is limited by stratigraphic barriers, possibly due to difficulty in accessing other underground compartments and low vagility of juveniles. Sympatric speciation is unlikely, since molecular evidence does not support a strong sister-group relationship between extant troglophilic and troglobitic species with sympatric distribution in the study area. Under differing sources of evidence, we hypothesize that Pleistocene climatic fluctuations and drainage changes is the main cause of vicariance in the study area, while the fragmented nature of the limestone lenses probably hindered subsurface dispersion. Troglobites could be relicts of extinct epigean ancestrals, while the extant troglophiles did not achieve reproductive isolation after vicariance events, resulting in the present co-distribution with species less closely related.

Affiliations: 1: 1Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Via Washington Luís, km 235, CEP: 13565-905, São Carlos, SP, Brazil; 2: 2Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, n. 101, CEP: 05508-090, São Paulo, Brazil


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation