Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Characteristics, distribution patterns, and implications for ichnology of modern burrows of Uca (Leptuca) speciosa, San Salvador Island, Bahamas

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

Fiddler crabs (Brachyura: Ocypodidae: Uca) are important bioturbators globally in protected tropical and temperate marine intertidal to supratidal, muddy to sandy environments. Their burrow distribution patterns vary with specific substrate. The study area is a saltwort (Salicornia virginica) meadow in a high intertidal to supratidal zone bordered by mangroves on the northern end of Pigeon Creek, a slightly hypersaline lagoon on San Salvador Island. Here the mostly carbonate sand substrate is heavily burrowed by Uca (Leptuca) speciosa (Ives, 1891). Three micro-habitats were differentiated according to variations in vegetation cover and depth to groundwater, as follows: 1) a meadow wetland, commonly flooded during spring high tides and with dense, luxuriant S. virginica and intermediate substrate firmness values, which has the highest density of burrows and the widest range of burrow diameters with mid-range values in burrow depth and length – maintaining the best conditions for fiddler crabs that include individuals of different ages; 2) dryland with slightly more subaerial elevation and sparse vegetation with the highest substrate firmness values and lowest density of burrows, the burrows being deeper, longer, and exhibiting the lowest range of diameters – with less favorable burrowing conditions for only fully mature adults; 3) wetland with sparse vegetation in the high intertidal zone with lowest firmness values, lowest number of burrows, smallest burrow diameters, and shallowest and shortest burrows – favoring colonization mainly by juveniles. If burrows similar to those of this study were preserved as trace fossils, they should be assigned to the ichnospecies Psilonichnus tubiformis Fürsich, 1981. When ichnological features such as burrow densities and dimensions, along with sedimentological and stratigraphical data, are taken into account in ways similar to those of this neoichnological study, interpretations of paleoenvironmental conditions and burrowing crab paleopopulation distributions could be significantly improved.

Affiliations: 1: 1Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain; 2: 2Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan; 3: 3Department of Geosciences, Smith College, Northampton, MA 01063, USA


Full text loading...


Data & Media loading...

1. Allen E. A. , Curran H. A. . 1974. "Biogenic sedimentary structures produced by crabs in lagoon margin and salt marsh environments near Beaufort, North Carolina". Journal of Sedimentary Petrology Vol 44: 538- 548.
2. Bartolini F. , Cimò F. , Fusi M. , Dahdouh-Guebas F. , Lopes G. P. , Cannicci S. . 2011. "The effect of sewage discharge on the ecosystem engineering activities of two East African fiddler crab species: consequences for mangrove ecosystem functioning". Marine Environmental Research Vol 71: 53- 61.
3. Botto F. , Iribarne O. . 2000. "Contrasting effects of two burrowing crabs ( Chasmagnathus granulataand Uca uruguayensis) on sediment composition and transport in estuarine environments". Estuarine Coastal and Shelf Science Vol 51: 141- 151.
4. Brito I. M. 1972. "Contribuição ao conhecimento dos Crustáceos Decápodos da Formação Pirabas. II – O gênero Uca(Brachyura-Ocypodidae)". Anais da Academia Brasileira de Ciéncias Vol 44: 95- 98.
5. Crane J. 1975. Fiddler Crabs of the World (Ocypodidae, Genus Uca). Princeton University Press, Princeton, NJ.
6. Curran H. A. , Martin A. J. . 2003. "Complex decapods burrows and ecological relationships in modern and Pleistocene intertidal carbonate environments, San Salvador Island, Bahamas". Palaeogeography, Palaeoclimatology, Palaeoecology Vol 192: 229- 245.
7. de Gibert J. M. , Muñiz F. , Belaústegui Z. , Hyžný M. . 2013. "Fossil and modern fiddler crabs ( Uca tangeri: Ocypodidae) and their burrows from SW Spain: Ichnological and biogeographic implications". Journal of Crustacean Biology Vol 33: 537- 551.
8. Eydoux F. 1835. "Nouvelle espèce de Gélasime". Magasin de Zoologie Vol 5( 7): 29- 32.
9. Fürsich F. T. 1981. "Invertebrate trace fossils from the Upper Jurassic of Portugal". Comunicações dos Serviços Geológicos de Portugal Vol 67: 153- 168.
10. Genoni G. P. 1991. "Increased burrowing by fiddler crabs Uca rapax(Smith) (Decapoda: Ocypodidae) in response to low food supply". Journal of Experimental Marine Biology and Ecology Vol 147: 267- 285.
11. Gribsholt B. , Kostka J. E. , Kristensen E. . 2003. "Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh". Marine Ecology Progress Series Vol 259: 237- 251.
12. Ives J. E. 1891. "Crustacea from the northern coast of Yucatan, the harbor of Vera Cruz, the west coast of Florida and the Bermuda Islands". Proceedings of the Academy of Natural Sciences of Philadelphia Vol 43: 176- 207.
13. Katz L. C. 1979. "Effects of burrowing by the fiddler crab, Uca pugnax(Smith)". Estuarine and Coastal Marine Science Vol 11: 233- 237.
14. Knaust D. , Curran H. A. , Dronov A. V. . 2012. "Shallow-marine carbonates", pp.  705- 750. In, Knaust D. , Bromley R. (eds.), Trace Fossils as Indicators of Sedimentary Environments. Elsevier, Amsterdam.
15. Koretsky C. M. , Meile C. , Van Cappellen P. . 2002. "Quantifying bioirrigation using ecological parameters". Geochemical Transactions Vol 3: 17- 30.
16. Kristensen E. 2008. "Mangrove crabs as ecosystem engineers; with emphasis on sediment processes". Journal of Sea Research Vol 59: 30- 43.
17. Lim S. S. L. 2006. "Fiddler crab burrow morphology: how do burrow dimensions and bioturbative activities compare in sympatric populations of Uca vocans(Linnaeus, 1758) and U. annulipes(H. Milne Edwards, 1837)?" Crustaceana Vol 79: 525- 540.
18. Lim S. S. L. , Diong C. H. . 2003. "Burrow-morphological characters of the fiddler crab, Uca annulipes(H. Milne Edwards, 1837) and ecological correlates in a lagoonal beach on Pulau Hantu". Crustaceana Vol 76: 1055- 1069.
19. Lim S. S. L. , Heng M. M. S. . 2007. "Mangrove micro-habitat influence on bioturbative activities and burrow morphology of the fiddler crab, Uca annulipes(H. Milne Edwards, 1837)". Crustaceana Vol 80: 31- 45.
20. Lim S. S. L. , Rosiah A. . 2007. "Influence of pneumatophores on the burrow morphology of Uca annulipes(H. Milne Edwards, 1837) (Brachyura, Ocypodidae) in the field and in simulated mangrove micro-habitats". Crustaceana Vol 80: 1327- 1338.
21. MacCraith B. J. , Gardner L. R. , Wethey D. S. , Moore W. S. . 2003. "The effect of fiddler crab burrowing on sediment mixing and radionuclide profiles along a topographic gradient in a southeastern salt marsh". Journal of Marine Research Vol 61: 359- 390.
22. Milner R. N. C. , Booksmythe I. , Jennions M. D. , Bakwel P. R. Y. . 2010. "The battle of the sexes? Territory acquisition and defence in male and female fiddler crabs". Animal Behaviour Vol 79: 735- 738.
23. Mitchell S. W. 1987. Sedimentology of Pigeon Creek, San Salvador Island, Bahamas, pp. 215-230. In, H. A. Curran (ed.), Proceedings of the Third Symposium on the Geology of the Bahamas. CCFL Bahamian Field Station, San Salvador.
24. Mouton E. C. Jr. , Felder D. L. . 1995. "Reproduction of the fiddler crabs Uca longisignalisand Uca spinicarpain a Gulf of Mexico salt marsh". Estuaries Vol 18: 469- 481.
25. Muñiz F. , de Gibert J. M. , Mayoral E. , Belaústegui Z. . 2010. Fieldtrip Guidebook, Workshop on Crustacean Bioturbation – Fossil and Recent. Universidad de Huelva, Huelva.
26. Qureshi N. A. , Saher U. . 2012. "Burrow morphology of three species of fiddler crabs ( Uca) along the coast of Pakistan". Belgian Journal of Zoology Vol 142: 114- 126.
27. Reise K. 2002. "Sediment mediated species interaction in coastal waters". Journal of Sea Research Vol 48: 127- 141.
28. Retraubun A. S. W. , Dawson M. , Evans S. M. . 1998. "The impacts of fiddler crabs on sediments of mangrove shores". Cakalele Vol 9: 17- 23.
29. Rodríguez-Tovar F. J. 2007. "Substrate firmness controlling nesting behaviour of Bembix oculata(Hymenoptera, Bembicinae)". In, Bromley R. , Buatois L. A. , Mángano G. , Genise J. F. , Melchor R. N. (eds.), Sediment-Organism Interactions: A Multifaceted Ichnology. Society of Economic Paleontologists and Mineralogists Special Paper 88: 353- 359.
30. Rodríguez-Tovar F. J. , Delgado J. . 2001. Torvane test: quantification of substrate firmness in ichnological research (abstract). VI International Ichnofabric Workshop, SVG-PDVSA-CSC, Margarita Island, Venezuela.
31. Rodríguez-Tovar F. J. , Delgado J. . 2006. "Cuantificación del grado de consolidación del substrato: Aplicación en análisis icnológicos". Ameghiniana Vol 43: 503- 508.
32. Rodríguez-Tovar F. J. , Mayoral E. , Santos A. . (in press). Influence of physicochemical burrowing activities of the fiddler crab Uca tangeriat the Huelva coast (SW Spain): palaeoichnological implications. Ichnos.
33. Seike K. , Jenkins R. G. , Watanabe H. , Nomaki H. , Sato K. . 2012. "Novel use of burrow casting as a research tool in deep-sea ecology". Biology Letters Vol 8: 648- 651.
34. Seike K. , Nara M. . 2008. "Burrow morphologies of the ghost crabs Ocypode ceratophthalmaand O. sinensisin foreshore, backshore, and dune subenvironments of a sandy beach in Japan". Journal of the Geological Society of Japan Vol 114: 591- 596.
35. Shinn E. A. 1968. "Burrowing in recent lime sediments of Florida and the Bahamas". Journal of Paleontology Vol 42: 879- 894.
36. Skov M. W. , Vannini M. , Shunula J. P. , Hartnoll R. G. , Cannicci S. . 2002. "Quantifying the density of mangrove crabs: Ocypodidae and Grapsidae". Marine Biology Vol 141: 725- 732.
37. Smith N. F. , Wilcox C. , Lessman J. M. . 2009. "Fiddler crab burrowing affects growth and production of the white mangrove ( Laguncularia racemosa) in a restored Florida coastal marsh". Marine Biology Vol 156: 2255- 2266.
38. Teal J. M. 1958. "Distribution of fiddler crabs in Georgia salt marshes". Ecology Vol 39: 185- 193.
39. Thurman C. , Hanna J. , Bennett C. . 2010. "Ecophenotypic physiology: osmoregulation by fiddler crabs ( Ucaspp.) from the northern Caribbean in relation to ecological distribution". Marine and Freshwater Behaviour and Physiology Vol 43: 339- 356.
40. Wang J. Q. , Zhang X. D. , Jiang L. F. , Bertness M. D. , Fang C. M. , Chen J. K. , Hara T. , Li B. . 2010. "Bioturbation of burrowing crabs promotes sediment turnover and carbon and nitrogen movements in an estuarine salt marsh". Ecosystems Vol 13: 586- 599.
41. Warren J. H. , Underwood A. J. . 1986. "Effects of burrowing crabs on the topography of mangrove swamps in New South Wales". Journal of Experimental Marine Biology and Ecology Vol 102: 223- 235.

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation