Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Behavioral decisions in sensory landscapes: crayfish use chemical signals to make habitat use choices

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

Animals make many ecological decisions such as foraging, mating, and avoiding predators based on the information they extract from the sensory cues in their environment. Environmental stimuli which include the information animals use for decision making can be called a sensory landscape. To investigate ecological decision making in complex sensory landscapes, we presented a crayfish with a choice of resource rich and resource poor habitats under different simulated predatory conditions within a Y-maze setting. A simulated predation event (alarm odor) was alternately placed in either the resource rich or poor habitat to observe the impact of the predation event on the habitat choice and use. Habitats consisted of multiple food resources, multiple shelter resources or combined food and shelter resources. Trials were videotaped and crayfish behavior was analyzed for time spent in each habitat under different predatory and resource conditions. Results show that crayfish avoided the location of alarm odors, regardless of resource presence. Resource preference of crayfish differed among resources depending on the alarm odor location. Female and male crayfish made different decisions based on resource type and alarm odor location. Information from the crayfish’s sensory landscape drives the decision making of crayfish. Researchers need to understand the sensory environment of an animal in order to make the most accurate prediction on an animal’s decision making and behavior. We suggest using a sensory landscape model, because organisms use the entire umwelt of stimuli to guide their decision on habitat and resource use.

10.1163/1937240X-00002266
/content/journals/10.1163/1937240x-00002266
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1163/1937240x-00002266
Loading

Data & Media loading...

1. Abrahams M. V. , Mangel M. , Hedges K. . 2007. "Predator-prey interactions and changing environments: who benefits?" Philosophical Transactions of the Royal Society B Biology Science Vol 362: 2095- 2104. [Crossref]
2. Arias-Del Razo I. , Hernàndez L. , Laundrè J. W. , Velasco-Vàzquez L. . 2012. "The landscape of fear: habitat use by a predator ( Canis latrans) and its main prey (Lepus californicusand Sylvilagus audubonii)". Canadian Journal of Zoology Vol 90: 683- 693. [Crossref]
3. Bouwma P. , Hazlett B. A. . 2001. "Integration of multiple predator cues by the crayfish Orconectes propinquus ". Animal Behavior Vol 61: 771- 776. [Crossref]
4. Bytheway J. P. , Carthey A. J. K. , Banks P. B. . 2013. "Risk vs. reward: how predators and prey respond to aging olfactory cues". Behavior, Ecology, and Sociobiology Vol 67: 715- 725. [Crossref]
5. Cappe C. , Murray M. M. , Barone P. , Rouiller E. M. . 2010. "Multisensory facilitation of behavior in monkeys: effects of stimulus intensity". Journal of Cognitive Neuroscience Vol 22: 2850- 2863. [Crossref]
6. Corcoran A. J. , Wagner R. D. , Conner W. E. . 2013. "Optimal predator risk assessment by the sonar-jarmming Arctiine moth Bertholdia trigona ". Plos ONE Vol 8: e63609, DOI: .
7. Derby C. D. , Steullet P. . 2001. "Why do animals have so many receptors? The role of multiple chemosensors in animal perception". The Biological Bulletin Vol 200: 211- 215. [Crossref]
8. Dill L. M. 1987. "Animal decision making and its ecological consequences: the future of aquatic ecology and behavior". Canadian Journal of Zoology Vol 65: 803- 811. [Crossref]
9. Edwards D. H. 1991. "Mutual inhibition among neural command systems as a possible mechanism for behavioral choice in crayfish". Journal of Neuroscience Vol 11: 1210- 1223.
10. Endler J. A. 1987. "Predation, light intensity and courtship behavior in Poecilia reticulate(pisces: Poeciliidae)". Animal Behavior Vol 35: 1376- 1385. [Crossref]
11. Evenden M. L. , Judd G. J. R. , Borden J. H. . 2000. "Investigations of mechanisms of pheromone communication disruption of Choristoneura rosaceana(Harris) in a wind tunnel". Journal of Insect Behavior Vol 13: 499- 510. [Crossref]
12. Fairhurst E. N. , Horn A. G. , Leonard A. L. . 2013. "Net acoustics and begging call structure in nestling tree swallows". Animal Behavior Vol 85: 917- 923. [Crossref]
13. Garvey J. E. , Stein R. A. , Thomas H. M. . 1994. "Assessing how fish predation and interspecific prey competition influence a crayfish assemblage". Ecology Vol 75: 532- 547. [Crossref]
14. Hagen H. A. 1870. Monograph of the North American Astacidae. Memoirs of the Museum of Comparative Zoölogy at Harvard College 2(1): 1-109, 11 pls.
15. Hazlett B. A. 1994. "Alarm responses in the crayfish Orconectes virilisand Orconectes propinquus ". Journal of Chemical Ecology Vol 20: 1525- 1535. [Crossref]
16. Hazlett B. A. . 1999. "Responses to multiple chemical cues by the crayfish Orconectes virilis ". Behaviour Vol 136: 161- 177. [Crossref]
17. Hazlett B. A. . 2000. "Information use by an invading species: do invaders respond more to alarm than native species?" Biological Invasions Vol 2: 289- 294. [Crossref]
18. Hazlett B. A. . 2003. "The effects of starvation on crayfish responses to alarm odor". Ethology Vol 109: 587- 592. [Crossref]
19. Hazlett B. A. , Schoolmaster D. R. . 1998. "Responses of cambarid crayfish to predator odor". Journal of Chemical Ecology Vol 24: 1757- 1769. [Crossref]
20. Hein C. L. , Roth B. M. , Ives A. R. , vander Zanden M. J. . 2006. "Fish predation and trapping for rusty crayfish ( Orconectes rusticus) control: a whole-lake experiment". Canadian Journal of Fisheries and Aquatic Sciences Vol 393: 383- 393. [Crossref]
21. Hernàndez L. , Laundrè J. W. . 2005. "Foraging in the ‘landscape of fear’ and its implication for habitat use and diet quality of elk Cervus elaphusand bison Bison bison ". Wildlife Biology Vol 11: 215- 220. [Crossref]
22. Hughes M. 1996. "The function of concurrent signals: visual and chemical communication in snapping shrimp". Animal Behavior Vol 52: 247- 257. [Crossref]
23. Keller T. A. , Moore P. A. . 2000. "Context-specific behavior: crayfish size influences crayfish-fish interactions". Journal of the North American Benthological Society Vol 19: 344- 351. [Crossref]
24. Keller T. A. , Tomba A. M. , Moore P. A. . 2001. "Orientation in complex chemical landscape: spatial arrangements of chemical sources influences crayfish food-finding efficiency in artificial streams". Limnology and Oceanography Vol 46: 238- 247. [Crossref]
25. Laundrè J. W. , Calderas J. M. M. , Hernàndez L. . 2009. "Foraging in the landscape of fear, the predator’s dilemma: where should I hunt?" The Open Ecology Journal Vol 2: 1- 6. [Crossref]
26. Lehtiniemi M. 2005. "Swim or hide: predator cues cause species specific reactions in young fish larvae". Journal of Fish Biology Vol 66: 1285- 1299. [Crossref]
27. Liden W. H. , Phillips M. L. , Herberholz J. . 2010. "Neural control of behavioural choice in juvenile crayfish". Proceedings of the Royal Society Series B: Biological Sciences Vol 277: 3493- 3500. [Crossref]
28. Martin A. L. , Moore P. A. . 2008. "The influence of dominance on shelter preference and eviction rates in the crayfish, Orconectes rusticus ". Ethology Vol 114: 351- 360. [Crossref]
29. Mitchell B. , Hazlett B. A. . 1996. "Predator avoidance strategies of the crayfish Orconectes virilis ". Crustaceana Vol 69: 400- 412. [Crossref]
30. Moore P. , Crimaldi J. . 2004. "Odor landscapes and animal behavior: tracking odor plumes in different physical worlds". Journal of Marine Systems Vol 49: 55- 64. [Crossref]
31. Murphy T. G. 2006. "Predator-elicited visual signal: why the turquoise-browed motmot wag-displays its racketed tail". Behavioral Ecology Vol 17: 547- 553. [Crossref]
32. Olden J. D. , Vander Zanden M. J. , Johnson P. T. J. . 2011. "Assessing ecosystem vulnerability to invasive rusty crayfish ( Orconectes rusticus)". Ecological Applications: A Publication of the Ecological Society of America Vol 21: 2587- 2599. [Crossref]
33. Phillips I. D. , Vinebrooke R. D. , Turner M. A. . 2009. "Ecosystem consequences of potential range expansions of Orconectes virilisand Orconectes rusticuscrayfish in Canada – a review". Environmental Reviews Vol 17: 235- 248. [Crossref]
34. Stein R. A. 1977. "Predation, optimal foraging, and the predator-prey interaction between fish and crayfish". Ecology Vol 58: 1237- 1253. [Crossref]
35. Stein R. A. , Magnuson J. J. . 1976. "Behavioral response of crayfish to a fish predator". Ecology Vol 57: 751- 761. [Crossref]
36. Strobbe F. , McPeek M. A. , De Block M. , Stoks R. . 2011. "Fish predation selects for reduced foraging activity". Behavior, Ecology, and Sociobiology Vol 65: 241- 247. [Crossref]
37. Tomba A. M. , Keller T. A. , Moore P. A. . 2001. "Foraging in complex chemical landscapes: chemical orientation strategies during chemical cues". Journal of the North American Benthological Society Vol 20: 211- 222. [Crossref]
38. Vickers N. J. 2000. "Mechanisms of animal navigation in odor plumes". The Biological Bulletin Vol 198: 203- 212. [Crossref]
39. Weissburg M. J. 2011. "Waterborne chemical communication: stimulus dispersal dynamics and orientation strategies in crustaceans", pp.  63- 84. In, Breithaupt T. , Thiel M. (eds.), Chemical Communication in Crustaceans. Springer, New York, NY.
40. Wilson M. L. , Weissburg M. J. . 2013. "Biotic structure indirectly affects associated prey in a predator-specific manner via changes in the sensory environment". Oecologia Vol 171: 427- 438. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/1937240x-00002266
Loading

Article metrics loading...

/content/journals/10.1163/1937240x-00002266
2018-09-21

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation