Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The copepod Tigriopus brevicornis (O. F. Müller, 1776) gains UV protection by feeding on UV-acclimated algae

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

Primary producers exposed to ultraviolet (UV) radiation accumulate a range of metabolites as part of their UV-acclimation response. These metabolites play an important role in plant and algal UV protection. We investigated whether UV protection is transferred to consumers that feed on UV-acclimated algal biomass and showed that the copepod Tigriopus brevicornis (O. F. Müller, 1776) displays increased UV tolerance when fed on UV-acclimated Enteromorpha sp. (Clorophyta). We conclude that dietary transfer of metabolites produced in UV-acclimated biomass underlies the increased UV protection of the copepods. The data emphasise the complexity of the effects of UV radiation on the rock pool ecosystem.

Affiliations: 1: School of Biological, Earth and Environmental Sciences, University College Cork, Enterprise Centre, North Mall Campus, Cork, County Cork, Ireland

*Current address: The Irish Peatland Conservation Council, Lullymore, Rathangan, County Kildare, Ireland.
**Corresponding author; e-mail:

Full text loading...


Data & Media loading...

1. Ballaré C. L. , Caldwell M. M. , Flint S. D. , Robinson S. A. , Bornman J. F. . 2011. "Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change". Photochemical & Photobiological Sciences Vol 10: 226-241.
2. Caramujo M. J. , de Carvalho C. C. , Silva S. J. , Carman K. R. . 2012. "Dietary carotenoids regulate astaxanthin content of copepods and modulate their susceptibility to UV light and copper toxicity". Marine Drugs Vol 10: 998-1018.
3. Dana J. D. 1849. "Conspectus Crustaceorum quae in Orbis Terrarum Circumnavigatione, Carolo Wilkes e Classe Reipublicae Foederatae Duce, lexit et descripsit". American Journal of Science and Arts (Series 2) Vol 8: 424-428.
4. Dana J. D. . 1850. "Synopsis generum crustaceorum ordinis “Schizopoda”". American Journal of Science and Arts (Series 2) Vol 9: 129-133.
5. Davenport J. , Healy A. , Casey N. , Heffron J. J. . 2004. "Diet-dependent UVAR and UVBR resistance in the high shore harpacticoid copepod Tigriopus brevicornis ". Marine Ecology Progress Series Vol 276: 299-303.
6. Flint S. D. , Caldwell M. M. . 2003. "A biological spectral weighting function for ozone depletion research with higher plants". Physiologia Plantarum Vol 117: 137-144.
7. Garcia P. E. , Dieguez M. C. . 2014. "Vulnerability of Patagonian planktonic copepods to fluctuations in temperature and UV radiation". Crustaceana Vol 87: 291-304.
8. Helbling E. W. , Menchi C. F. , Villafañe V. E. . 2002. "Bioaccumulation and role of UV-absorbing compounds in two marine crustacean species from Patagonia, Argentina". Photochemical & Photobiological Sciences Vol 1: 820-825.
9. Hylander S. , Jephson T. . 2010. "UV protective compounds transferred from a marine dinoflagellate to its copepod predator". Journal of Experimental Marine Biology and Ecology Vol 389: 38-44.
10. Jansen M. A. K. , van den Noort R. E. , Tan M. A. , Prinsen E. , Lagrimini L. M. , Thorneley R. N. . 2001. "Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress". Plant Physiology Vol 126: 1012-1023.
11. Jansen M. A. K. , Hectors K. , O’Brien N. M. , Guisez Y. , Potters G. . 2008. "Plant stress and human health: do human consumers benefit from UV-B acclimated crops?" Plant Science Vol 175: 449-458.
12. Lee K. , Kim K. , Lee W. . 2014. "Study of morphological deformity of Tigriopus japonicus s. l. by mid-ultraviolet radiation (UVB)". Proceedings of the Biological Society of Washington Vol 127: 87-98.
13. Lotufo G. R. , Fleeger J. W. . 1995. "Description of Amphiascoides atopus, a new species (Crustacea: Copepoda: Harpacticoida) from a mass culture system". Proceedings of the Biological Society of Washington Vol 108: 117-124.
14. Müller O. F. 1776. Zoologiae Danicae prodromus: seu Animalium Daniae et Norvegiae indigenarum; characteres, nomina, et synonyma imprimis popularium. Hallageriis, Havniae (= Copenhagen).
15. Newman S. J. , Dunlap W. C. , Nicol S. , Ritz D. . 2000. "Antarctic krill (Euphausia superba) acquire a UV-absorbing mycosporine-like amino acid from dietary algae". Journal of Experimental Marine Biology and Ecology Vol 255: 93-110.
16. Rastogi R. P. , Sinha R. P. , Singh S. P. , Häder D. P. . 2010. "Photoprotective compounds from marine organisms". Journal of Industrial Microbiology & Biotechnology Vol 37: 537-558.
17. Rhodes A. C. 2007. "Dietary effects on carotenoid composition in the marine harpacticoid copepod Nitokra lacustris ". Journal of Plankton Research Vol 29(Supplement 1): i73-i83.
18. Scott J. D. , Chalker-Scott L. , Foreman A. E. , D’Angelo M. . 1999. " Daphnia pulex fed UVB-irradiated Chlamydomonas reinhardtii show decreased survival and fecundity". Photochemistry and Photobiology Vol 70: 308-313.
19. Shmankevich V. 1875. Quelques Crustacés des eaux sales et douces et leurs rapports avec l’element environnant. Mémoires de la Société des Naturalistes de la Nouvelle Russie (Odessa) 3: 391 pp.

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation