Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Are there any physiological differences between the male morphotypes of the freshwater shrimp Macrobrachium amazonicum (Heller, 1862) (Caridea: Palaemonidae)?

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

A comparison was made of the metabolism, nitrogenous excretion, growth, oxidized energy substrate, ingestion rate, and fecal production of the males of three morphotypes (CC, GC1, and GC2) of the palaemonid shrimp Macrobrachium amazonicum (Heller, 1862). The proportion of these morphotypes in the population is fixed, and individuals can change from one type to another (TC to CC, CC to GC1, and GC1 to GC2) to maintain this proportion. The three morphotypes were evaluated for 30 days, during which individuals were fed daily with commercial food. Food debris, feces, and exuviae were collected daily. Oxygen consumption was measured in a closed respirometer, and ammonia excretion was measured by colorimetry. The atomic ratio O:N was used to indicate the predominant energy substrate oxidized. Mass gain (% WWi) was higher in morphotypes CC and GCI (12.7 ± 3.2 and 16.0 ± 3.7%, respectively) than in GC2, in which it was nearly zero (1.9 ± 1.5%). Lost exuviae contained approximately 40% of the energy content of the individuals, and males did not cease feeding as post-molts as reported in some crustaceans. Despite the elevated growth of CC and GC1, the ingestion rates were similar in all morphotypes and corresponded to 3% of the total biomass. It is possible that CC and GC1 channel a higher percentage of ingested energy and nutrients into growth, whereas GC2 channels more energy into other pathways such as reproduction. Whereas the morphotypes CC and GC1 mainly use carbohydrates as their energy substrate, GC2 uses proteins. Given the elevated growth rate of CC and GC1, they appear to preferentially use amino acids in tissue building, whereas GC2 uses these substrates as an energy source. The feces eliminated by the morphotypes were always proportional to the ingestion rate (approximately 2%), suggesting utilization in terms of nutrient absorption was similar for them. Oxygen consumption in specific mass was similar for all three morphotypes (approximately 1.8 μg (mg dw)−1 h−1), and ammonia excretion was approximately 180% higher in GC2 than in the other two morphotypes. These results might reflect the pattern of growth, activity, function in the population, and differences in reproductive behaviour in the morphotypes and could be evidence of a preparation for the subsequent morphotype.

Affiliations: 1: 1Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Campus do Litoral Paulista, Praça Infante Dom Henrique, s/n, Parque Bitaru, CEP 11330-900, São Vicente, SP, Brazil ; 2: 2Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Centro de Aquicultura da UNESP – CAUNESP, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900, Jaboticabal, SP, Brazil

*Corresponding author; e-mail:

Full text loading...


Data & Media loading...

1. Alcock A. 1905. "A revision of the “genus” Penaeus, with diagnoses of some new species and varieties". Annals and Magazine of Natural History (Series 7) Vol 16: 508-532.
2. Allan E. L. , Froneman P. W. , Hodgson A. N. . 2006. "Effects of temperature and salinity on the standard metabolic rate (SMR) of the caridean shrimp Palaemon peringueyi ". Journal of Experimental Marine Biology and Ecology Vol 337: 103-108.
3. Augusto A. , Masui D. C. . 2014. "Comparison of growth, metabolism, feed, fecal production, excretion and energy budget in males and females of the Amazon River prawn (Macrobrachium amazonicum)". Marine and Freshwater Behaviour and Physiology Vol 47: 373-388.
4. Barbieri E. 2007. "Use of oxygen consumption and ammonium excretion to evaluate the sublethal toxicity of cadmium and zinc on Litopenaeus schmitti (Burkenroad, 1936, Crustacea)". Water Environment Research Vol 79: 641-648.
5. Barki A. , Karplus I. , Goren M. . 1992. "Effects of size and morphotype on dominance hierarchies and resource competition in the fresh-water prawn Macrobrachium rosenbergii ". Animal Behaviour Vol 44: 547-555.
6. Bate C. S. 1888. "Report on the Crustacea Macrura collected by Challenger during the years 1873-1876". Scientific Results of the Exploring Voyage of “Challenger” 1873-1876 Vol 24: 1-942.
7. Bautista L. 1986. "The response of Macrobrachium rosenbergii juveniles to varying protein/energy ratio ingest diets". Aquaculture Vol 53: 229-234.
8. Boone L. 1931. "Anomuran, macruran Crustacea from Panama and Canal Zone". Bulletin of the American Museum of Natural History Vol 63: 137-189.
9. Chen J. C. , Nan F. H. . 1994. "Comparisons of oxygen-consumption and ammnonia excretion of 5 penaeids". Journal of Crustacean Biology Vol 14: 289-294.
10. Chuntapa B. P. , Piyatiratitivorakul S. , Nitithamyong C. , Viyakarn V. , Menasveta P. . 1999. "Optimal lipid:carbohydrate and protein:energy ratios in semi-purified diets for juvenile black tiger shrimp Penaeus monodon Fabricius". Aquaculture Research Vol 30: 11-12.
11. Clark E. 1936. "The freshwater crayfishes of Australia". Memoirs of the National Museum of Victoria Vol 10: 5-58.
12. Claybrook D. L. 1983. "Nitrogen metabolism", pp.  163-212. In, Mantel L. H. (ed.), Internal Anatomy and Physiological Regulation. D. E. Bliss (ed.), The Biology of Crustacea. Vol. 5. Academic Press, New York, NY.
13. Cobb J. S. , Tamm G. R. , Wang D. . 1982. "Behavioral mechanisms influencing molt frequency in the American lobster, Homarus americanus ". Journal of Experimental Marine Biology and Ecology Vol 62: 185-200.
14. Cuzon G. , Guillaume J. . 1997. "Energy and protein:energy ratio", pp.  51-70. In, D’Abramo L. R. , Conklin D. E. , Akiyama D. M. (eds.), Crustacean Nutrition – Advances in World Aquaculture. Vol Vol. 3. World Aquaculture Society, Baton Rouge, LA.
15. Da Costa F. P. , Gomes B. S. F. D. , Pereira S. D. D. A. , Arruda M. D. . 2016. "Influence of stocking density on the behaviour of juvenile Litopenaeus vannamei (Boone, 1931)". Aquaculture Research Vol 47: 912-924.
16. De Haan H. M. 1823-1830. "Crustacea", pp. i-xvii, i-xxxi, ix-xvi, 1-243. In, von Siebold P. F. (ed.), Fauna Japonica sive Descriptio Animalium, quae in Itinere per Japoniam, Jußu et Auspiciis Superiorum, qui Summum in India Batava Imperium Tenent, Suscepto, Annis 1823-1830 Collegit, Notis, Observationibus et Adumbrationibus Illustravit. Lugduni-Batavorum [= Leiden].
17. De Man J. G. 1879. "On some species of the genus Palaemon Fabr. with descriptions of two new forms". Notes Leyden Museum Vol 1: 165-184.
18. Diaz-Iglesias E. , Castillo V. M. , Baez-Hidalgo M. , Re-Araujo A. D. , Silva-Loera A. . 2012. "A bioenergetics of juvenile red claw lobster, Cherax quadricarinatus, fed two artificial diets". Hidrobiologia Vol 22: 147-160.
19. Fabricius J. C. 1798. Supplementum Entomologiae Systematicae. Proft & Storch, Hafniae [= Copenhagen].
20. Fernández M. S. , Bustos C. , Luquet G. , Saez D. , Neira-Carrillo A. , Corneillat M. , Alcaraz G. , Arias J. L. . 2012. "Proteoglycan occurrence in gastrolith of the crayfish Cherax quadricarinatus (Malacostraca: Decapoda)". Journal of Crustacean Biology Vol 32: 802-815.
21. Gaudy R. , Sloane L. . 1981. "Effect of salinity on oxygen consumption in postlarvae of the penaeid shrimps Penaeus monodon and P. stylirostris without and with acclimation". Marine Biology Vol 65: 297-301.
22. Geddes M. C. , Mills B. J. , Walker K. F. . 1988. "Growth in the Australian freshwater crayfish Cherax destructor (Clark, 1936), under laboratory conditions". Australian Journal of Marine and Freshwater Research Vol 39: 555-568.
23. González-Peña M. C. G. , Moreira M. G. S. . 2003. "Effect of dietary cellulose level on specific dynamic action and ammonia excretion of the prawn Macrobrachium rosenbergii (De Man 1879)". Aquaculture Research Vol 34: 821-827.
24. Hayd L. A. , Lemos D. , Valenti W. C. . 2010. "Ontogenetic variation in ammonia excretion during the early life stages of the Amazon River prawn, Macrobrachium amazonicum ". Journal of the World Aquaculture Society Vol 41: 107-115.
25. Heller C. 1862. "Beiträge zur näheren Kenntnis der Macrouren". Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften in Wien Vol 1862: 389-426, pls. 1, 2.
26. Hellmann J. K. , Ligocki I. Y. , O’Connor C. M. , Reddon A. R. , Farmer T. M. , Marsh-Rollo S. E. , Balshine S. , Hamilton I. M. . 2016. "The influence of status and the social environment on energy stores in a social fish". Journal of Fish Biology Vol 88: 1321-1334.
27. Henderson J. R. 1893. "A contribution to Indian carcinology". Transactions of the Linnean Society of London (Series 2, Zoology) Vol 5: 325-458.
28. Holmes S. J. 1900. "Synopsis of California stalk-eyed Crustacea". Occasional Papers of the California Academy of Sciences Vol 7: 1-262.
29. Ibrahim N. A. F. 2011. Controle social do crescimento do camarão da amazônia Macrobrachium amazonicum. Ph.D. Thesis, Centro de Aquicultura da Universidade Estadual Paulista, São Paulo.
30. Karplus I. , Hulata G. , Ovadia D. , Jaffe R. . 1992. "Social control of growth in Macrobrachium rosenbergii. The role of claws in bull-runt interactions". Aquaculture Vol 105: 281-296.
31. Karplus I. , Malecha S. , Sagi A. . 2000. "The biology and management of size variation", pp.  254-289. In, New M. B. , Valenti W. C. (eds.), Freshwater Prawn Culture: the Farming of Macrobrachium rosenbergii . Blackwell, Oxford.
32. Karzinkin G. S. , Tarkovskaya O. I. . 1964. "Determination of caloric value of small samples", pp.  122-124. In, Pavloskii E. N. (ed.), Techniques for the Investigation of Fish Physiology. Oldbourne Press, London.
33. Koroleff F. 1983. "Determination of ammonia", pp.  150-157. In, Grasshoff K. , Ehrhardt M. , Kremling K. (eds.), Methods of Seawater Analysis. 2nd Edition. Verlag Chemie, Weinheim.
34. Kulkarni G. K. , Josh P. K. . 1980. "Some aspects of respiratory metabolism of a penaeid prawn, Penaeus japonicus (Bate) (Crustacea, Decapoda, Penaeidae)". Hydrobiologia Vol 75: 27-32.
35. Kuris A. M. , Ra’anan Z. , Sagi A. , Cohen D. . 1987. "Morphotypic differentiation of male Malaysian prawns, Macrobrachium rosenbergii ". Journal of Crustacean Biology Vol 7: 219-237.
36. Langer S. , Chalotra R. , Kour T. . 2002. "The occurrence and description of male morphotypes of Macrobrachium dayanum ". Journal of Animal Morphology and Physiology Vol 49: 49-54.
37. Lemos D. , Phan V. N. . 2001. "Energy partitioning into growth, respiration, excretion and exuvia during larval development of the shrimp Farfantepenaeus paulensis ". Aquaculture Vol 199: 133-145.
38. Lemos D. , Netto B. , Germano A. . 2006. "Energy budget of juvenile fat snook Centropomus parallelus fed live food". Comparative Biochemistry and Physiology Part A: Molecular and Integrative Biology Vol 144: 33-40.
39. Li E. , Chen L. A. , Zeng C. , Chen X. , Yu N. , Lai Q. , Qin J. G. . 2007. "Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities". Aquaculture Vol 265: 385-390.
40. Maciel C. R. , Valenti W. C. . 2009. "Biology, fisheries, and aquaculture of the Amazon River prawn Macrobrachium amazonicum: a review". Nauplius Vol 17: 61-79.
41. Mayzaud P. , Conover R. J. . 1988. "O:N ratio as a tool to describe zooplankton metabolism". Marine Ecology Progress Series Vol 45: 289-302.
42. Mazzarelli C. C. M. , Santos M. R. , Amorim R. V. , Augusto A. . 2015. "Effect of salinity on the metabolism and osmoregulation of selected ontogenetic stages of an Amazon population of Macrobrachium amazonicum shrimp (Decapoda, Palaemonidae)". Brazilian Journal of Biology Vol 75: 372-379.
43. McGaw L. J. , Curtis D. L. . 2013. "Effect of meal size and body size on specific dynamic action and gastric processing in decapod crustaceans". Comparative Biochemistry and Physiology Part A: Molecular and Integrative Biology Vol 166: 414-425.
44. Michaels C. J. , Antwis R. E. , Preziosi R. F. . 2015. "Impacts of UVB provision and dietary calcium content on serum vitamin D-3, growth rates, skeletal structure and coloration in captive oriental fire-bellied toad (Bombina orientalis)". Journal of Animal Physiology and Animal Nutrition Vol 99: 391-403.
45. Moraes-Riodades P. M. C. , Valenti W. C. . 2004. "Morphotypes in male Amazon River prawns, Macrobrachium amazonicum ". Aquaculture Vol 236: 297-307.
46. Moreira G. S. , McNamara J. C. , Shumway S. E. , Moreira P. S. . 1983. "Osmoregulation and respiratory metabolism in Brazilian Macrobrachium (Decapoda, Palaemonidae)". Comparative Biochemistry and Physiology Part A: Molecular and Integrative Biology Vol 74: 57-62.
47. Ocampo L. , Rosas C. , Villarreal H. . 2003. "Effect of temperature on post-prandial metabolism of brown shrimp Farfantepenaeus californiensis ". Journal of Shelf Research Vol 22: 281-284.
48. Osbeck P. 1765. Reise nach Ostindien und China. Nebst O. Toreens Reise nach Suratte und C. G. Ekebergs Nachricht von der Landwirthschaft der Chineser. Aus dem Schwedischen übersetzt von J. G. Georgi. Johann Christians Koppe, Rostock.
49. Papa L. P. 2007. Caracterização estrutural do sistema reprodutor masculino e do hepatopâncreasdos diferentes morfotipos de Macrobrachium amazonicum. Ph.D. Thesis. Universidade Estadual Paulista, São Paulo.
50. Pascual C. , Zenteno E. , Cuzon G. , Suárez J. , Sánchez A. , Gaxiola G. , Taboada G. , Maldonado T. , Rosa C. . 2004. " Litopenaeus vannamei juveniles energetic balance and immunological response to dietary protein". Aquaculture Vol 239: 375-395.
51. Pezzato L. E. , Barros M. M. , Sampaio F. G. , Falcon D. R. , Gonçalves G. S. , Hisano H. . 2003. "Relação energia:proteína dietária para pós-larvas de Macrobrachium amazonicum (Crustacea, Decapoda)". Acta Scientiarum: Animal Sciences Vol 25: 235-241.
52. Ra’anan Z. , Cohen D. . 1985. "Ontogeny of social structure and population dynamics in the giant freshwater prawn, Macrobrachium rosenbergii (de Man)". Crustacean Issues Vol 3: 277-311.
53. Ra’anan Z. , Sagi A. , Wax Y. , Karplus I. , Hulata G. , Kuris A. . 1991. "Growth, size rank, and maturation of the fresh-water prawn, Macrobrachium rosenbergii – analysis of marked prawns in an experimental population". Biological Bulletin (Woods Hole) Vol 181: 379-386.
54. Randall J. W. 1840. "Catalogue of the Crustacea brought by Thomas Nuttall and J. K. Townsend, from the West Coast of North America and the Sandwich Islands, with descriptions of such species as are apparently new, among which are included several species of different localities, previously existing in the collection of the Academy". Journal of the Academy of Natural Sciences of Philadelphia Vol 8: 106-147, pls. 3-7.
55. Ranjeet K. 2010. "Genetic characterization of male morphotypes of Macrobrachium rosenbergii using RAPD markers". Uttar Pradesh Journal of Zoology Vol 30: 107-113.
56. Rocha A. J. S. , Gomes V. , Santos T. C. A. , Passos M. J. A. C. R. , Phan V. N. . 2013. "Bioenergetic budget of juveniles of fat snook Centropomus parallelus (Perciformes, Centropomidae) as a function of salinity acclimation". Pan-Am Journal of Aquatic Science Vol 8: 10-20.
57. Rosas C. , Ocampo L. , Gaxiola G. , Sanchez A. , Soto L. A. . 1999. "Effect of salinity on survival, growth, and oxygen consumption of post larvae (PL10-PL21) of Litopenaeus setiferus ". Journal of Crustacean Biology Vol 19: 244-251.
58. Rosas C. , Cuzon G. , Gaxiola G. , Pascual C. , Taboada G. , Arena L. , Van Wormhoudt A. . 2002. "An energetic conceptual model of the physiological role of dietary carbohydrate and salinity on L. vannamei juveniles". Journal of Experimental Marine Biology and Ecology Vol 268: 47-67.
59. Santos F. M. S. , Ribeiro K. , Júnior A. C. V. F. , Júnior L. B. C. , Valenti W. C. , Bezerra R. S. . 2014. "Digestive proteases from wild and farmed male morphotypes of the Amazon River prawn (Macrobrachium amazonicum)". Journal of Crustacean Biology Vol 34: 189-198.
60. Shiau S. , Peng C. . 1992. "Utilization of different carbohydrates at different dietary protein levels in grass prawn, Penaeus monodon, reared in seawater". Aquaculture Vol 101: 241-250.
61. Silva P. F. , Arruda M. D. . 2015. "Social status and individual behavioral differences in juvenile Macrobrachium rosenbergii ". Marine and Freshwater Behaviour and Physiology Vol 48: 1-11.
62. Stebbing T. R. R. 1915. "South African Crustacea (part VIII of S. A. Crustacea, for the marine investigations in South Africa)". Annals of the South African Museum Vol 15: 57-104.
63. Tidwell J. H. , Shawn C. , Van Arnum A. , Leigh A. , McCathy M. . 2001. "The effect of photoperiod on growth and survival of freshwater prawn, Macrobrachium rosenbergii in nursery tanks". Journal of Applied Aquaculture Vol 11: 41-47.
64. Wang A. , Wang W. , Wang Y. , Shang L. , Liu Y. , Sun R. . 2003. "Effect of dietary vitamin C supplementation on the oxygen consumption, ammonia-N excretion and Na+/K+ ATPase of Macrobrachium nipponense exposed to ambient ammonia". Aquaculture Vol 220: 833-841.
65. Wiegmann A. F. 1836. "Beschreibung liniger neuen Crustaceen des Berliner Museums aus Mexico und Brasilien". Archiv für Naturgeschichte Vol 2: 145-151.
66. Wortham J. L. , Van Maurik L. N. , Lauren N. . 2012. "Morphology and morphotypes of the Hawaiian river shrimp, Macrobrachium grandimanus ". Journal of Crustacean Biology Vol 32: 545-556.
67. Zanders I. P. , Rodriguez J. M. . 1992. "Effect of temperature and salinity stress on osmoionic regulation in adults and on oxygen consumption in larvae and adults of Macrobrachium amazonicum (Decapoda, Palaemonidae)". Comparative Biochemistry and Physiology Part A: Molecular and Integrative Biology Vol 101: 505-509.

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation