Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Full Access A Cross-Laboratory Investigation of Timing Endophenotypes in Mouse Behavior

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

A Cross-Laboratory Investigation of Timing Endophenotypes in Mouse Behavior

  • PDF
  • HTML
Add to Favorites
You must be logged in to use this functionality

Phenotyping behavioral and cognitive processes is a critical practice in mouse research and reliable phenotypic assessment is an essential component of building well-defined links between genes and behavioral/cognitive functions.The success of behavioral screens in neurobehavioral mouse genetics depends on the identification of reliable, reproducible, and high-throughput behavioral/cognitive measures from individual animals irrespective of the differences in opinions regarding how to tackle phenotyping in different behavioral domains. Furthermore, reliable behavioral assays must be resistant to inevitable environmental differences across laboratories since protocols can be replicated but not all the environmental conditions.Here we present a cross-laboratory study of interval timing behaviors in mice. Two classically used mouse inbred substrains, C57BL/6J and C57BL/6N, were studied over several days in home-cages containing automated testing apparatus. Remarkably, all timing measures in mouse performance showed a robust reproducibility across centers and even small differences between the two substrains were comparable across laboratories. Moreover, we have observed a consistent increase in error rate during the light phase of the light–dark cycle, which suggests that mouse performance during this phase is compromised by a possible sleep inertia-like effect. Overall, our study demonstrates that analysis of mouse timing behavior can lead to robust and reliable endophenotypes in mouse behavioral genetic studies.

Affiliations: 1: 1Department of Neuroscience and Brain Technologies-Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; 2: 2Consiglio Nazionale delle Ricerche-Institute of Cell Biology and Neurobiology-EMMA-Infrafrontier-IMPC, Monterotondo, Italy; 3: 3MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK; 4: 4Department of Psychology, Koç University, Istanbul, Turkey

10.1163/22134468-00002007
/content/journals/10.1163/22134468-00002007
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
  • Supplementary Material
    • Publication Date : 23 December 2013
    • DOI : 10.1163/22134468-00002007_002
    • File Size: 1744275
    • File format:application/pdf

Phenotyping behavioral and cognitive processes is a critical practice in mouse research and reliable phenotypic assessment is an essential component of building well-defined links between genes and behavioral/cognitive functions.The success of behavioral screens in neurobehavioral mouse genetics depends on the identification of reliable, reproducible, and high-throughput behavioral/cognitive measures from individual animals irrespective of the differences in opinions regarding how to tackle phenotyping in different behavioral domains. Furthermore, reliable behavioral assays must be resistant to inevitable environmental differences across laboratories since protocols can be replicated but not all the environmental conditions.Here we present a cross-laboratory study of interval timing behaviors in mice. Two classically used mouse inbred substrains, C57BL/6J and C57BL/6N, were studied over several days in home-cages containing automated testing apparatus. Remarkably, all timing measures in mouse performance showed a robust reproducibility across centers and even small differences between the two substrains were comparable across laboratories. Moreover, we have observed a consistent increase in error rate during the light phase of the light–dark cycle, which suggests that mouse performance during this phase is compromised by a possible sleep inertia-like effect. Overall, our study demonstrates that analysis of mouse timing behavior can lead to robust and reliable endophenotypes in mouse behavioral genetic studies.

Loading

Full text loading...

/deliver/journals/22134468/2/1/22134468_002_01_S03_text.html;jsessionid=SS2flMJZnBMZKczT-T5KYTbA.x-brill-live-02?itemId=/content/journals/10.1163/22134468-00002007&mimeType=html&fmt=ahah
/content/journals/10.1163/22134468-00002007
Loading

Data & Media loading...

1. Agostino P. V. , do Nascimento M. , Bussi I. L. , Eguia M. C. , Golombek D. A. ( 2011). "Circadian modulation of interval timing in mice". Brain Res., Vol 1370, 154163. http://dx.doi.org/10.1016/j.brainres.2010.11.029
2. Agostino P. V. , Golombek D. A. , Meck W. H. ( 2011). "Unwinding the molecular basis of interval and circadian timing". Front. Integr. Neurosci., Vol 5, 64. http://dx.doi.org/10.3389/fnint.2011.00064
3. Bailey D. W. ( 1978). "Sources of subline divergence and their relative importance for sublines of six major inbred strains of mice". In Morse H. C. (Ed.), Origins of inbred mice(pp.  197215). New York: Academic Press. http://dx.doi.org/10.1016/B978-0-12-507850-4.50020-2
4. Balci F. , Freestone D. , Gallistel C. R. ( 2009). "Risk assessment in man and mouse". Proc. Natl Acad. Sci. USA, Vol 106, 24592463. http://dx.doi.org/10.1073/pnas.0812709106
5. Balci F. , Freestone D. , Simen P. , Desouza L. , Cohen J. D. , Holmes P. ( 2011). "Optimal temporal risk assessment". Frontier. Integr. Neurosci., Vol 5, 56.
6. Balci F. , Gallistel C. R. , Allen B. D. , Frank K. M. , Gibson J. M. , Brunner D. ( 2009). "Acquisition of peak responding: What is learned?" Behav. Process., Vol 80, 6775. http://dx.doi.org/10.1016/j.beproc.2008.09.010
7. Balci F. , Papachristos E. B. , Gallistel C. R. , Brunner D. , Gibson J. , Shumyatsky G. P. ( 2008). "Interval timing in genetically modified mice: A simple paradigm". Genes Brain Behav., Vol 7, 373384. http://dx.doi.org/10.1111/j.1601-183X.2007.00348.x
8. Balci F. , Simen P. , Niyogi R. , Saxe A. , Hughes J. A. , Holmes P. , Cohen J. D. ( 2011). "Acquisition of decision making criteria: Reward rate ultimately beats accuracy". Atten. Percept. Psycho., Vol 73, 640657. http://dx.doi.org/10.3758/s13414-010-0049-7
9. Barnard A. R. , Nolan P. M. ( 2008). "When clocks go bad: Neurobehavioural consequences of disrupted circadian timing". PLoS Genet., Vol 4, e1000040. http://dx.doi.org/10.1371/journal.pgen.1000040
10. Blum K. , Briggs A. H. , DeLallo L. , Elston S. F. , Ochoa R. ( 1982). "Whole brain methionine-enkephalin of ethanol-avoiding and ethanol-preferring c57BL mice". Experientia, Vol 38, 14691470. http://dx.doi.org/10.1007/BF01955775
11. Brown S. D. , Chambon P. , de Angelis M. H. ( 2005). "EMPReSS: standardized phenotype screens for functional annotation of the mouse genome". Nat. Gen., Vol 37, 1155. http://dx.doi.org/10.1038/ng1105-1155
12. Buhusi C. V. , Meck W. H. ( 2005). "What makes us tick? Functional and neural mechanisms of interval timing". Nat. Rev. Neurosci., Vol 6, 755765. http://dx.doi.org/10.1038/nrn1764
13. Cheng K. , Westwood R. ( 1993). "Analysis of single trials in pigeons timing performance". J. Exp. Psychol.-Anim. Behav. Proc., Vol 19, 5667. http://dx.doi.org/10.1037/0097-7403.19.1.56
14. Church R. M. , Meck W. H. , Gibbon J. ( 1994). "Application of scalar timing theory to individual trials". J. Exp. Psychol.-Anim. Behav. Proc., Vol 20, 135155. http://dx.doi.org/10.1037/0097-7403.20.2.135
15. Crabbe J. C. , Wahlsten D. , Dudek B. C. ( 1999). "Genetics of mouse behavior: Interactions with laboratory environment". Science, Vol 284, 16701672. http://dx.doi.org/10.1126/science.284.5420.1670
16. Ferrara M. , De Gennaro L. , Bertini M. ( 2000). "Time-course of sleep inertia upon awakening from nighttime sleep with different sleep homeostasis conditions". Aviat. Space Envir. Md., Vol 71, 225229.
17. Gallistel C. R. , King A. P. , Daniel A. M. , Freestone D. , Papachristos E. B. , Balci F. , Kheifets A. , Zhang J. , Su X. , Schiff G. , Kourtev H. ( 2010). "Screening for learning and memory mutations: A new approach". Xin Li Xue Bao, Vol 42, 138158.
18. Godinho S. I. , Maywood E. S. , Shaw L. , Tucci V. , Barnard A. R. , Busino L. , Pagano M. , Kendall R. , Quwailid M. M. , Rosario Romero M. , O’Neill J. , Chesham J. E. , Brooker D. , Lalanne Z. , Hastings M. H. , Nolan P. M. ( 2007). "The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period". Science, Vol 316, 897900. http://dx.doi.org/10.1126/science.1141138
19. Kas M. J. , Van Ree J. M. ( 2004). "Dissecting complex behaviours in the post-genomic era". Tr. Neurosci., Vol 27, 366369. http://dx.doi.org/10.1016/j.tins.2004.04.011
20. Khisti R. T. , Wolstenholme J. , Shelton K. L. , Miles M. F. ( 2006). "Characterization of the ethanol-deprivation effect in substrains of C57BL/6 mice". Alcohol, Vol 40, 119126. http://dx.doi.org/10.1016/j.alcohol.2006.12.003
21. Lassi G. , Ball S. T. , Maggi S. , Colonna G. , Nieus T. , Cero C. , Bartolomucci A. , Peters J. , Tucci V. ( 2012). "Loss of Gnas imprinting differentially affects REM/NREM sleep and cognition in mice". PLoS Genet., Vol 8, e1002706. http://dx.doi.org/10.1371/journal.pgen.1002706
22. Leise T. L. , Indic P. , Paul M. J. , Schwartz W. J. ( 2013). "Wavelet meets actogram". J. Biol. Rhythm., Vol 28, 6268. http://dx.doi.org/10.1177/0748730412468693
23. Mandillo S. , Tucci V. , Holter S. M. , Meziane H. , Banchaabouchi M. A. , Kallnik M. , Lad H. V. , Nolan P. M. , Ouagazzal A.-M. , Coghill E. L. , Gale K. , Golini E. , Jacquot S. , Krezel W. , Parker A. , Riet F. , Schneider I. , Marazziti D. , Auwerx J. , Brown S. D. M. , Chambon P. , Rosenthal N. , Tocchini-Valentini G. , Wurst W. ( 2008). "Reliability, robustness, and reproducibility in mouse behavioral phenotyping: A cross-laboratory study". Physiol. Genomics, Vol 34, 243255. http://dx.doi.org/10.1152/physiolgenomics.90207.2008
24. Matsuo N. , Yamasaki N. , Ohira K. , Takao K. , Toyama K. , Eguchi M. , Yamaguchi S. , Miyakawa T. ( 2009). "Neural activity changes underlying the working memory deficit in alpha-CaMKII heterozygous knockout mice". Front. Behav. Neurosci., Vol 3.
25. Mekada K. , Abe K. , Murakami A. , Nakamura S. , Nakata H. , Moriwaki K. , Obata Y. , Yoshiki A. ( 2009). "Genetic differences among C57BL/6 substrains". Exp. Anim. Tokyo, Vol 58, 141149. http://dx.doi.org/10.1538/expanim.58.141
26. Radulovic J. , Kammermeier J. , Spiess J. ( 1998). "Generalization of fear responses in C57BL/6N mice subjected to one-trial foreground contextual fear conditioning". Behav. Brain Res., Vol 95, 179189. http://dx.doi.org/10.1016/S0166-4328(98)00039-4
27. Shurtleff D. , Raslear T. G. , Simmons L. ( 1990). "Circadian variations in time perception in rats". Physiol. Behav., Vol 47, 931939. http://dx.doi.org/10.1016/0031-9384(90)90021-U
28. Stiedl O. , Radulovic J. , Lohmann R. , Birkenfeld K. , Palve M. , Kammermeier J. , Sananbenesi F. , Spiess J. ( 1999). "Strain and substrain differences in context- and tone-dependent fear conditioning of inbred mice". Behav. Brain Res., Vol 104, 112. http://dx.doi.org/10.1016/S0166-4328(99)00047-9
29. Tassi P. , Muzet A. ( 2000). "Sleep inertia". Sleep Med Rev., Vol 4, 341353. http://dx.doi.org/10.1053/smrv.2000.0098
30. Tucci V. ( 2011). "Sleep, circadian rhythms, and interval timing: Evolutionary strategies to time information". Front. Integr. Neurosci., Vol 5, 92.
31. Tucci V. , Achilli F. , Blanco G. , Lad H. V. , Wells S. , Godinho S. , Nolan P. M. ( 2007). "Reaching and grasping phenotypes in the mouse ( Mus musculus): A characterization of inbred strains and mutant lines". Neuroscience, Vol 147, 573582. http://dx.doi.org/10.1016/j.neuroscience.2007.04.034
32. Tucci V. , Lad H. V. , Parker A. , Polley S. , Brown S. D. , Nolan P. M. ( 2006). "Gene-environment interactions differentially affect mouse strain behavioral parameters". Mamm. Genome, Vol 17, 11131120. http://dx.doi.org/10.1007/s00335-006-0075-x
33. Urback Y. K. , Bode F. , Nguyen H. P. , Riess O. , van Horsten S. ( 2010). "Neurobehavioral tests in rat models of degenerative brain diseases". In Anegon I. (Ed.), Rat genomics: methods and protocols. Methods in molecular biology( Vol Vol. 597, pp.  333356). New York, NY: Humana Press, Springer Science + Business Media, LLC.
http://brill.metastore.ingenta.com/content/journals/10.1163/22134468-00002007
Loading
Loading

Article metrics loading...

/content/journals/10.1163/22134468-00002007
2014-01-01
2016-12-03

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation