Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Full Access Low-Frequency Neural Oscillations Support Dynamic Attending in Temporal Context

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Low-Frequency Neural Oscillations Support Dynamic Attending in Temporal Context

  • PDF
  • HTML
Add to Favorites
You must be logged in to use this functionality

image of Timing & Time Perception

Behaviorally relevant environmental stimuli are often characterized by some degree of temporal regularity. Dynamic attending theory provides a framework for explaining how perception of stimulus events is affected by the temporal context within which they occur. However, the precise neural implementation of dynamic attending remains unclear. Here, we provide a suggestion for a potential neural implementation of dynamic attending by appealing to low-frequency neural oscillations. The current review will familiarize the reader with the basic theoretical tenets of dynamic attending theory, and review empirical work supporting predictions derived from the theory. The potential neural implementation of dynamic attending theory with respect to low-frequency neural oscillations will be outlined, covering stimulus processing in regular and irregular contexts. Finally, we will provide some more speculative connections between dynamic attending and neural oscillations, and suggest further avenues for future research.

Affiliations: 1: Max Planck Research Group ‘Auditory Cognition’, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103 Leipzig, Germany

10.1163/22134468-00002011
/content/journals/10.1163/22134468-00002011
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading

Behaviorally relevant environmental stimuli are often characterized by some degree of temporal regularity. Dynamic attending theory provides a framework for explaining how perception of stimulus events is affected by the temporal context within which they occur. However, the precise neural implementation of dynamic attending remains unclear. Here, we provide a suggestion for a potential neural implementation of dynamic attending by appealing to low-frequency neural oscillations. The current review will familiarize the reader with the basic theoretical tenets of dynamic attending theory, and review empirical work supporting predictions derived from the theory. The potential neural implementation of dynamic attending theory with respect to low-frequency neural oscillations will be outlined, covering stimulus processing in regular and irregular contexts. Finally, we will provide some more speculative connections between dynamic attending and neural oscillations, and suggest further avenues for future research.

Loading

Full text loading...

/deliver/journals/22134468/2/1/22134468_002_01_S05_text.html;jsessionid=ZNDJhI21vfsAFVxYg3_zZo5X.x-brill-live-03?itemId=/content/journals/10.1163/22134468-00002011&mimeType=html&fmt=ahah
/content/journals/10.1163/22134468-00002011
Loading

Data & Media loading...

1. Allman M. J. , Meck W. H. ( 2012). "Pathophysiological distortions in time perception and timed performance". Brain, Vol 135, 656677. http://dx.doi.org/10.1093/brain/awr210
2. Barnes R. , Jones M. R. ( 2000). "Expectancy, attention, and time". Cognitive Psychol., Vol 41, 254311. http://dx.doi.org/10.1006/cogp.2000.0738
3. Bishop G. H. ( 1933). "Cyclic changes in the excitability of the optic pathway of the rabbit". Am. J. Physiol., Vol 103, 213224.
4. Block R. A. , Zakay D. , Hancock P. A. ( 1999). "Developmental changes in human duration judgments: A meta-analytic review". Dev. Rev., Vol 19, 183211. http://dx.doi.org/10.1006/drev.1998.0475
5. Bolger D. , Trost W. , Schön D. ( 2013). "Rhythm implicitly affects orienting of attention across modalities". Acta Psychol., Vol 142, 238244. http://dx.doi.org/10.1016/j.actpsy.2012.11.012
6. Brochard R. , Abecasis D. , Potter D. , Ragot R. , Drake C. ( 2003). "The “ticktock” of our interval clock: Direct brain evidence of subjective accents in isochronous sequences". Psychol. Sci., Vol 14, 362366. http://dx.doi.org/10.1111/1467-9280.24441
7. Brochard R. , Tassin M. , Zagar D. ( 2013). "Got rhythm… for better and for worse. Cross-modal effects of auditory rhythm on visual word recognition". Cognition, Vol 127, 214219. http://dx.doi.org/10.1016/j.cognition.2013.01.007
8. Buhusi C. , Meck W. H. ( 2005). "What makes us tick? Functional and neural mechanisms of interval timing". Nat. Rev. Neurosci., Vol 6, 755765. http://dx.doi.org/10.1038/nrn1764
9. Buhusi C. , Meck W. H. ( 2009). "Relative time sharing: New findings and an extension of the resource allocation model of temporal processing". Trans. R. Soc. Lond., Vol 364, 18751885. http://dx.doi.org/10.1098/rstb.2009.0022
10. Busch N. A. , Dubois J. , VanRullen R. ( 2009). "The phase of ongoing EEG oscillations predicts visual perception". J. Neurosci., Vol 29, 78697876. http://dx.doi.org/10.1523/JNEUROSCI.0113-09.2009
11. Busch N. A. , vanRullen R. ( 2012). "Spontaneous EEG oscillations reveal periodic sampling of visual attention". Proc. Natl Acad. Sci. USA, Vol 109, 1604816053. http://dx.doi.org/10.1073/pnas.1109034109
12. Buzsaki G. , Draguhn A. ( 2004). "Neuronal oscillations in cortical networks". Science, Vol 25, 19261929. http://dx.doi.org/10.1126/science.1099745
13. Canolty R. T. , Knight R. T. ( 2012). "The functional role of cross-frequency coupling". Trends Cogn. Sci., Vol 14, 506515. http://dx.doi.org/10.1016/j.tics.2010.09.001
14. Church R. M. ( 2003). "A concise introduction to scalar timing theory". In Meck W. H. (Ed.), Functional and neural mechanisms of interval timing(pp.  322). Boca Raton, FL: CRC Press.
15. Coull J. T. , Cheng R. K. , Meck W. H. ( 2011). "Neuroanatomical and neurochemical substrates of timing". Neuropsychopharmacology, Vol 36, 325. http://dx.doi.org/10.1038/npp.2010.113
16. Cravo A. M. , Rohenkohl G. , Wyart V. , Nobre A. C. ( 2013). "Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex". J. Neurosci., Vol 33, 40024010. http://dx.doi.org/10.1523/JNEUROSCI.4675-12.2013
17. Drake C. , Botte M. C. ( 1993). "Tempo sensitivity in auditory sequences: Evidence for a multiple-look model". Percept. Psychophys., Vol 54, 277286. http://dx.doi.org/10.3758/BF03205262
18. Drake C. , Jones M. R. , Baruch C. ( 2000). "The development of rhythmic attending in auditory sequences: Attunement, referent period, focal attending". Cognition, Vol 77, 251288. http://dx.doi.org/10.1016/S0010-0277(00)00106-2
19. Drewing K. , Aschersleben G. , Li S.-C. ( 2006). "Sensorimotor synchronization across the lifespan". Int. J. Behav. Dev., Vol 30, 280287. http://dx.doi.org/10.1177/0165025406066764
20. Fraisse P. ( 1982). "Rhythm and tempo". In Deutsch D. (Ed.), The psychology of music(pp.  149180). New York: Academic Press. http://dx.doi.org/10.1016/B978-0-12-213562-0.50010-3
21. Fujioka T. , Trainor L. J. , Large E. W. , Ross B. ( 2009). "Beta and gamma rhythms in human auditory cortex during musical beat processing". Ann. NY Acad. Sci., Vol 1169, 8992. http://dx.doi.org/10.1111/j.1749-6632.2009.04779.x
22. Fujioka T. , Trainor L. J. , Large E. W. , Ross B. ( 2012). "Internalized timing of isochronous sounds is represented in neuromagnetic Beta oscillations". J. Neurosci., Vol 32, 17911802. http://dx.doi.org/10.1523/JNEUROSCI.4107-11.2012
23. Ghitza O. ( 2011). "Linking speech perception and neurophysiology: Speech decoding guided by cascaded oscillators locked to the input rhythm". Front. Psychol., Vol 2. doi: . http://dx.doi.org/10.3389/fpsyg.2011.00130
24. Ghitza O. , Giraud A.-L. , Poeppel D. ( 2013). "Neuronal oscillations and speech perception: Critical-band temporal envelopes are the essence". Front. Hum. Neurosci., Vol 6. doi: . http://dx.doi.org/10.3389/fnhum.2012.00340
25. Gibbon J. ( 1977). "Scalar expectancy theory and Weber’s law in animal timing". Psychol. Rev., Vol 84, 279325. http://dx.doi.org/10.1037/0033-295X.84.3.279
26. Gibbon J. , Church R. M. , Meck W. H. ( 1984). "Scalar timing in memory". Ann. NY Acad. Sci., Vol 423, 5277. http://dx.doi.org/10.1111/j.1749-6632.1984.tb23417.x
27. Gill P. , Zhang J. , Woolley S. M. N. , Fremouw T. , Theunissen F. E. ( 2006). "Sound representation methods for spectro-temporal receptive field estimation". J. Comput. Neurosci., Vol 21, 520. http://dx.doi.org/10.1007/s10827-006-7059-4
28. Giraud A.-L. , Poeppel D. ( 2012). "Cortical oscillations and speech processing: Emerging computational principles and operations". Nat. Neurosci., Vol 15, 511517. http://dx.doi.org/10.1038/nn.3063
29. Grondin S. ( 2001). "From physical time to the first and second moments of psychological time". Psychol. Bull., Vol 127, 2244. http://dx.doi.org/10.1037/0033-2909.127.1.22
30. Grondin S. ( 2010). "Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions". Atten. Percept. Psychophys., Vol 72, 561582. http://dx.doi.org/10.3758/APP.72.3.561
31. Gu B. M. , Cheng R. K. , Yin B. , Meck W. H. ( 2011). "Quinpirole-induced sensitization to noisy/sparse periodic input: Temporal synchronization as a component of obsessive-compulsive disorder". Neuroscience, Vol 179, 143150. http://dx.doi.org/10.1016/j.neuroscience.2011.01.048
32. Haegens S. , Nacher V. , Luna R. , Romo R. , Jensen O. ( 2011). "Alpha-oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking". Proc. Natl Acad. Sci. USA, Vol 108, 1937719382. http://dx.doi.org/10.1073/pnas.1117190108
33. Henry M. J. , Herrmann B. ( 2012). "A precluding role of low-frequency oscillations for auditory perception in a continuous processing mode". J. Neurosci., Vol 32, 1752517527. http://dx.doi.org/10.1523/JNEUROSCI.4456-12.2012
34. Henry M. J. , Obleser J. ( 2012). "Frequency modulation entrains slow neural oscillations and optimizes human listening behavior". Proc. Natl Acad. Sci. USA, Vol 109, 2009520100. http://dx.doi.org/10.1073/pnas.1213390109
35. Ivry R. B. , Spencer R. M. C. ( 2004). "The neural representation of time". Curr. Opin. Neurobiol., Vol 14, 225232. http://dx.doi.org/10.1016/j.conb.2004.03.013
36. Jensen O. , Colgin L. ( 2007). "Cross-frequency coupling between neuronal oscillations". Trends Cogn. Sci., Vol 11, 267269. http://dx.doi.org/10.1016/j.tics.2007.05.003
37. Jones M. R. ( 1976). "Time, our lost dimension: Toward a new theory of perception, attention, and memory". Psychol. Rev., Vol 83, 323355. http://dx.doi.org/10.1037/0033-295X.83.5.323
38. Jones M. R. ( 2004). "Attention and timing". In Neuhoff J. G. (Ed.), Ecological psychoacoustics(pp.  4985). San Diego, CA, USA: Elsevier, Inc.
39. Jones M. R. ( 2008). "Musical time". In Hallam S. , Cross I. , Thaut M. (Eds.), Oxford handbook of music psychology(pp.  8192). Oxford, UK: Oxford University Press.
40. Jones M. R. , Boltz M. ( 1989). "Dynamic attending and responses to time". Psychol. Rev., Vol 96, 459491. http://dx.doi.org/10.1037/0033-295X.96.3.459
41. Jones M. R. , Johnston H. M. , Puente J. ( 2006). "Effects of auditory pattern structure on anticipatory and reactive attending". Cognitive Psychol., Vol 53, 5996. http://dx.doi.org/10.1016/j.cogpsych.2006.01.003
42. Jones M. R. , Moynihan H. , MacKenzie N. , Puente J. ( 2002). "Temporal aspects of stimulus-driven attending in dynamic arrays". Psychol. Sci., Vol 13, 313319. http://dx.doi.org/10.1111/1467-9280.00458
43. Jongsma M. , Desain P. , Honing H. ( 2004). "Rhythmic context influences the auditory evoked potentials of musicians and nonmusicians". Biol. Psychol., Vol 66, 129152. http://dx.doi.org/10.1016/j.biopsycho.2003.10.002
44. Klein J. M. , Jones M. R. ( 1996). "Effects of attentional set and rhythmic complexity on attending". Percept. Psychophys., Vol 58, 3446. http://dx.doi.org/10.3758/BF03205473
45. Kotz S. A. , Schwartze M. ( 2010). "Cortical speech processing unplugged: A timely subcortico-cortical framework". Trends Cogn. Sci., Vol 14, 392399. http://dx.doi.org/10.1016/j.tics.2010.06.005
46. Lakatos P. , Chen C.-M. , O’Connell M. N. , Mills A. , Schroeder C. E. ( 2007). "Neuronal oscillations and multisensory interactions in primary auditory cortex". Neuron, Vol 53, 272292. http://dx.doi.org/10.1016/j.neuron.2006.12.011
47. Lakatos P. , Karmos G. , Mehta A. D. , Ulbert I. , Schroeder C. E. ( 2008). "Entrainment of neuronal oscillations as a mechanism of attentional selection". Science, Vol 320, 110113. http://dx.doi.org/10.1126/science.1154735
48. Lakatos P. , Musacchia G. , O’Connell M. N. , Falcher A. Y. , Javitt D. C. , Schroeder C. E. ( 2013). "The spectrotemporal filter mechanism of auditory selective attention". Neuron, Vol 77, 750761. http://dx.doi.org/10.1016/j.neuron.2012.11.034
49. Lakatos P. , O’Connell M. N. , Barczak A. , Mills A. , Javitt D. C. , Schroeder C. E. ( 2009). "The leading sense: Supramodal control of neurophysiological context by attention". Neuron, Vol 64, 419430. http://dx.doi.org/10.1016/j.neuron.2009.10.014
50. Lakatos P. , Shah A. S. , Knuth K. H. , Ulbert I. , Karmos G. , Schroeder C. E. ( 2005). "An oscillatory hierarchy controlling neuronal excitability and stimulus processing in auditory cortex". J. Neurophysiol., Vol 94, 19041911. http://dx.doi.org/10.1152/jn.00263.2005
51. Lange K. ( 2009). "Brain correlates of early auditory processing are attenuated by expectations for time and pitch". Brain Cogn., Vol 69, 127137. http://dx.doi.org/10.1016/j.bandc.2008.06.004
52. Lange K. ( 2010). "Can a regular context induce temporal orienting to a target sound?" Int. J. Psychophysiol., Vol 78, 231238. http://dx.doi.org/10.1016/j.ijpsycho.2010.08.003
53. Large E. W. ( 2008). "Resonating to musical rhythm: Theory and experiment". In Grondin S. (Ed.), Psychology of time(pp.  189231). Amsterdam: Emerald.
54. Large E. W. ( 2010). "Neurodynamics of music". In Jones M. R. , Fay R. R. , Popper A. N. (Eds.), Music perception(pp.  201231). New York, NY, USA: Springer. http://dx.doi.org/10.1007/978-1-4419-6114-3_7
55. Large E. W. , Jones M. R. ( 1999). "The dynamics of attending: How people track time-varying events". Psychol. Rev., Vol 106, 119159. http://dx.doi.org/10.1037/0033-295X.106.1.119
56. Leaver A. M. , Rauschecker J. P. ( 2010). "Cortical representation of natural complex sounds: Effects of acoustic features and auditory object category". J. Neurosci., Vol 30, 76047612. http://dx.doi.org/10.1523/JNEUROSCI.0296-10.2010
57. Lisman J. E. , Jensen O. ( 2013). "The theta–gamma neural code". Neuron, Vol 77, 10021016. http://dx.doi.org/10.1016/j.neuron.2013.03.007
58. London J. ( 1995). "Some examples of complex meters and their implications for models of metric perception". Music Percept., Vol 13, 5977. http://dx.doi.org/10.2307/40285685
59. Machens C. K. , Wehr M. S. , Zador A. M. ( 2004). "Linearity of cortical receptive fields measured with natural sounds". J. Neurosci., Vol 24, 10891100. http://dx.doi.org/10.1523/JNEUROSCI.4445-03.2004
60. Martin T. , Egly R. , Houck J. M. , Bish J. P. , Barrera B. D. , Lee C. D. , Tesche C. D. ( 2005). "Chronometric evidence for entrained attention". Percept. Psychophys., Vol 67, 168184. http://dx.doi.org/10.3758/BF03195020
61. Mathewson K. E. , Gratton G. , Fabiani M. , Beck D. M. , Ro T. ( 2009). "To see or not to see: Prestimulus alpha phase predicts visual awareness". J. Neurosci., Vol 29, 27252732. http://dx.doi.org/10.1523/JNEUROSCI.3963-08.2009
62. Matell M. S. , Meck W. H. ( 2004). "Cortico-striatal circuits and interval timing: Coincidence-detection of oscillatory processes". Cogn. Brain Res., Vol 21, 139170. http://dx.doi.org/10.1016/j.cogbrainres.2004.06.012
63. McAuley J. D. ( 1995). Perception of time as phase: Toward an adaptive-oscillator model of rhythmic pattern processing. Indiana University.
64. McAuley J. D. ( 2010). "Tempo and rhythm". In Jones M. R. , Fay R. R. , Popper A. N. (Eds.), Music perception(pp.  165199). New York, NY, USA: Springer. http://dx.doi.org/10.1007/978-1-4419-6114-3_6
65. McAuley J. D. , Jones M. R. ( 2003). "Modeling effects of rhythmic context on perceived duration: A comparison of interval and entrainment approaches to short-interval timing". J. Exp. Psychol.-Human, Vol 29, 11021125. http://dx.doi.org/10.1037/0096-1523.29.6.1102
66. McAuley J. D. , Jones M. R. , Holub S. , Johnston H. M. , Miller N. S. ( 2006). "The time of our lives: Life span development of timing and event tracking". J. Exp. Psychol. Gen., Vol 135, 348. http://dx.doi.org/10.1037/0096-3445.135.3.348
67. McAuley J. D. , Kidd G. R. ( 1998). "Effect of deviations from temporal expectations on tempo discrimination of isochronous tone sequences". J. Exp. Psychol.-Human, Vol 24, 17861800. http://dx.doi.org/10.1037/0096-1523.24.6.1786
68. Meck W. H. ( 1996). "Neuropharmacology of timing and time perception". Cogn. Brain Res., Vol 3, 227242. http://dx.doi.org/10.1016/0926-6410(96)00009-2
69. Meck W. H. , Penney T. B. , Pouthas V. ( 2008). "Cortico-striatal representation of time in animals and humans". Curr. Opin. Neurobiol., Vol 18, 145152. http://dx.doi.org/10.1016/j.conb.2008.08.002
70. Michon J. ( 1964). "Studies on subjective duration I. Differential sensitivity in the perception of repeated temporal intervals". Acta Psychol., Vol 22, 441450. http://dx.doi.org/10.1016/0001-6918(64)90032-0
71. Miller J. E. , Carlson L. A. , McAuley J. D. ( 2013). "When what you hear influences when you see: Listening to an auditory rhythm influences the temporal allocation of visual attention". Psychol. Sci., Vol 24, 1118. http://dx.doi.org/10.1177/0956797612446707
72. Miller N. S. , McAuley J. D. ( 2005). "Tempo sensitivity in isochronous tone sequences: The multiple-look model revisited". Percept. Psychophys., Vol 67, 11501160. http://dx.doi.org/10.3758/BF03193548
73. Nelken I. , Rotman Y. , Yosef O. B. ( 1999). "Responses of auditory-cortex neurons to structural features of natural sounds". Nature, Vol 397, 154157. http://dx.doi.org/10.1038/16456
74. Ng B. S. W. , Schroeder T. , Kayser C. ( 2012). "A precluding but not ensuring role of entrained low-frequency oscillations for auditory perception". J. Neurosci., Vol 32, 1226812276. http://dx.doi.org/10.1523/JNEUROSCI.1877-12.2012
75. Palmer C. ( 1997). "Music performance". Annu. Rev. Psychol., Vol 48, 115138. http://dx.doi.org/10.1146/annurev.psych.48.1.115
76. Parncutt R. ( 1994). "A perceptual model of pulse salience and metrical accent in musical rhythms". Music Percept., Vol 11, 409464. http://dx.doi.org/10.2307/40285633
77. Picton T. W. , John M. S. , Dimitrijevic A. , Purcell D. ( 2003). "Human auditory steady-state responses". Int. J. Audiol., Vol 42, 177219. http://dx.doi.org/10.3109/14992020309101316
78. Quene H. , Port R. F. ( 2005). "Effects of timing regularity and metrical expectancy on spoken-word perception". Phonetica, Vol 62, 113. http://dx.doi.org/10.1159/000087222
79. Redford M. A. ( 1999). An articulatory basis for the syllable. PhD thesis, The University of Texas at Austin.
80. Rees A. , Green G. G. R. , Kay R. H. ( 1986). "Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man". Hearing Res., Vol 23, 123133. http://dx.doi.org/10.1016/0378-5955(86)90009-2
81. Repp B. H. ( 2003). "Rate limits in sensorimotor synchronization with auditory and visual sequences: the synchronization threshold and the benefits and costs of interval subdivision". J. Motor Behav., Vol 35, 355. http://dx.doi.org/10.1080/00222890309603156
82. Repp B. H. ( 2005). "Sensorimotor synchronization: A review of the tapping literature". Psychol. Bull. & Review, Vol 12, 969992. http://dx.doi.org/10.3758/BF03206433
83. Repp B. H. ( 2006). "Rate limits of sensorimotor synchronization". Cognitive Psychol., Vol 2, 163181. http://dx.doi.org/10.2478/v10053-008-0053-9
84. Rohenkohl G. , Cravo A. M. , Wyart V. , Nobre A. C. ( 2012). "Temporal expectation improves the quality of sensory processing". J. Neurosci., Vol 32, 84248428. http://dx.doi.org/10.1523/JNEUROSCI.0804-12.2012
85. Saleh M. , Reimer J. , Penn R. , Ojakangas C. L. , Hatsapoulos N. G. ( 2010). "Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues". Neuron, Vol 65, 461471. http://dx.doi.org/10.1016/j.neuron.2010.02.001
86. Sarter M. , Givens B. , Bruno J. P. ( 2001). "The cognitive neuroscience of sustained attention: Where top-down meets bottom-up". Brain Res. Rev., Vol 35, 146160. http://dx.doi.org/10.1016/S0165-0173(01)00044-3
87. Schroeder C. E. , Lakatos P. ( 2009). "Low-frequency neuronal oscillations as instruments of sensory selection". Tr. Neurosci., Vol 32, 918. http://dx.doi.org/10.1016/j.tins.2008.09.012
88. Schroeder C. E. , Lakatos P. , Kajikawa Y. , Partan S. , Puce A. ( 2008). "Neuronal oscillations and visual amplification of speech". Trends Cogn. Sci., Vol 12, 106113. http://dx.doi.org/10.1016/j.tics.2008.01.002
89. Schroeder C. E. , Wilson D. A. , Randman T. , Scharfman H. , Lakatos P. ( 2010). "Dynamics of active sensing and perceptual selection". Curr. Opin. Neurobiol., Vol 20, 172176. http://dx.doi.org/10.1016/j.conb.2010.02.010
90. Schulze H. H. ( 1978). "The detectability of local and global displacements in regular rhythmic patterns". Psychol. Res., Vol 40, 173181. http://dx.doi.org/10.1007/BF00308412
91. Schwartze M. , Keller P. E. , Patel A. D. , Kotz S. A. ( 2011a). "The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo change". Behav. Brain Res., Vol 216, 685691. http://dx.doi.org/10.1016/j.bbr.2010.09.015
92. Schwartze M. , Rothermich K. , Schmidt-Kassow M. , Kotz S. A. ( 2011b). "Temporal regularity effects on pre-attentive and attentive processing of deviance". Biol. Psychol., Vol 87, 146151. http://dx.doi.org/10.1016/j.biopsycho.2011.02.021
93. Snyder J. S. , Large E. W. ( 2005). "Gamma-band activity reflects the metric structure of rhythmic tone sequences". Cogn. Brain Res., Vol 24, 117126. http://dx.doi.org/10.1016/j.cogbrainres.2004.12.014
94. Stefanics G. , Hangya B. , Hernadi I. , Winkler I. , Lakatos P. , Ulbert I. ( 2010). "Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed". J. Neurosci., Vol 30, 1357813585. http://dx.doi.org/10.1523/JNEUROSCI.0703-10.2010
95. van Noorden L. , Moelants D. ( 1999). "Resonance in the perception of musical pulse". J. New Music Res., Vol 28, 4366. http://dx.doi.org/10.1076/jnmr.28.1.43.3122
96. VanRullen R. , Busch N. A. , Drewes J. , Dubno J. R. ( 2011). "Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability". Front. Psychol., Vol 2, 19.
97. Volgushev M. , Christiakova M. , Singer W. ( 1998). "Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential". Neuroscience, Vol 83, 1525. http://dx.doi.org/10.1016/S0306-4522(97)00380-1
98. von Stein A. , Samthein J. ( 2000). "Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization". Int. J. Psychophysiol., Vol 38, 301313. http://dx.doi.org/10.1016/S0167-8760(00)00172-0
99. Will U. , Berg E. ( 2007). "Brain wave synchronization and entrainment to periodic acoustic stimuli". Neuroscience Lett., Vol 424, 5560. http://dx.doi.org/10.1016/j.neulet.2007.07.036
100. Zaehle T. , Lenz D. , Ohl F. W. , Herrmann C. S. ( 2010). "Resonance phenomena in the human auditory cortex: Individual resonance frequencies of the cerebral cortex determine electrophysiological responses". Exp. Brain Res., Vol 203, 629635. http://dx.doi.org/10.1007/s00221-010-2265-8
101. Zakay D. , Block R. A. ( 1996). "The role of attention in time estimation processes". Adv. Psychol., Vol 115, 143164.
102. Zanto T. P. , Large E. W. , Fuchs A. , Kelso J. S. ( 2005). "Gamma-band responses to perturbed auditory sequences: Evidence for synchronization of perceptual processes". Music Percept., Vol 22, 531547. http://dx.doi.org/10.1525/mp.2005.22.3.531
103. Zanto T. P. , Snyder J. S. , Large E. W. ( 2006). "Neural correlates of rhythmic expectancy". Adv. Cogn. Psychol., Vol 2, 221231. http://dx.doi.org/10.2478/v10053-008-0057-5
http://brill.metastore.ingenta.com/content/journals/10.1163/22134468-00002011
Loading
Loading

Article metrics loading...

/content/journals/10.1163/22134468-00002011
2014-01-01
2016-12-11

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation