Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Dissociation of Neural Mechanisms for Intersensory Timing Deficits in Parkinson’s Disease

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

This study investigated the ability of individuals with Parkinson’s disease (PD) to synthesize temporal information across the senses, namely audition and vision. Auditory signals (A) are perceived as lasting longer than visual signals (V) when they are compared together, since attention is captured and sustained more easily than for visual information. We used the audiovisual illusion to probe for disturbances in brain networks that govern the resolution of time in two intersensory conditions that putatively differ in their attention demands. PD patients and controls judged the relative duration of successively presented pairs of unimodal (AA, VV) and crossmodal (VA, AV) signals whilst undergoing fMRI. There were four main findings. First, underestimation of time was exaggerated in PD when timing depended on controlled attention (AV), whereas subtle deficits were found when audition dominated and attention was more easily sustained (VA). Second, group differences in regional activation were observed only for the AV-unimodal comparison, where the PD group failed to modulate basal ganglia, anterior insula, and inferior cerebellum activity in accord with the timing condition. Third, the intersensory timing conditions were dissociated by patterns of abnormal functional connectivity. When intersensory timing emphasized controlled attention, patients showed weakened connectivity of the cortico-thalamus-basal ganglia (CTBG) circuit and the anterior insula with widespread cortical regions, yet enhanced cerebellar connectivity. When audition dominated intersensory timing, patients showed enhanced connectivity of CTBG elements, the anterior insula, and the cerebellum with the caudate tail and frontal cortex. Fourth, abnormal connectivity measures showed excellent sensitivity and specificity in accurately classifying subjects. The results demonstrate that intersensory timing deficits in PD were well characterized by context-dependent patterns of functional connectivity within a presumed core timing system (CTBG) and a ventral attention hub (anterior insula), and enhanced cerebellar connectivity irrespective of the hypothesized attention demands of timing.

Affiliations: 1: 4Department of Neuroscience, University of California San Diego, La Jolla, CA, USA

10.1163/22134468-00002025
/content/journals/10.1163/22134468-00002025
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1163/22134468-00002025
Loading

Data & Media loading...

1. Agostino P. V. , Golombek D. A. , Meck W. H. ( 2011). "Unwinding the molecular basis of interval and circadian timing". Front. Integr. Neurosci., Vol 5, 64. http://dx.doi.org/10.3389/fnint.2011.00064
2. Aron A. R. , Poldrack R. A. ( 2006). "Cortical and subcortical contributions to Stop signal response inhibition: Role of the subthalamic nucleus". J. Neurosci., Vol 26, 24242433. http://dx.doi.org/10.1523/JNEUROSCI.4682-05.2006
3. Artieda J. , Pastor M. A. , Lacruz F. , Obeso J. A. ( 1992). "Temporal discrimination is abnormal in Parkinson’s disease". Brain, Vol 115, 199210. http://dx.doi.org/10.1093/brain/115.1.199
4. Badre D. ( 2008). "Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes". Trends Cogn. Sci., Vol 12, 193200. http://dx.doi.org/10.1016/j.tics.2008.02.004
5. Balci F. , Wiener M. , Cavdaroglu B. , Branch C. H. ( 2013). "Epistasis effects of dopamine genes on interval timing and reward magnitude in humans". Neuropsychologia, Vol 51, 293308. http://dx.doi.org/10.1016/j.neuropsychologia.2012.08.002
6. Berry A. S. , Li X. , Lin Z. , Lustig C. ( 2014). "Shared and distinct factors driving attention and temporal processing across modalities". Acta Psychol. (Amst.), Vol 147, 4250. http://dx.doi.org/10.1016/j.actpsy.2013.07.020
7. Bostan A. C. , Dum R. P. , Strick P. L. ( 2010). "The basal ganglia communicate with the cerebellum". Proc. Natl Acad. Sci. USA, Vol 107, 84528456. http://dx.doi.org/10.1073/pnas.1000496107
8. Burgess P. W. , Dumontheil I. , Gilbert S. J. ( 2007). "The gateway hypothesis of rostral prefrontal cortex (area 10) function". Trends Cogn. Sci., Vol 11, 290298. http://dx.doi.org/10.1016/j.tics.2007.05.004
9. Chen K. M. , Yeh S. L. ( 2009). "Asymmetric cross-modal effects in time perception". Acta Psychol. (Amst.), Vol 130, 225234. http://dx.doi.org/10.1016/j.actpsy.2008.12.008
10. Corbetta M. , Shulman G. L. ( 2002). "Control of goal-directed and stimulus-driven attention in the brain". Nat. Rev. Neurosci., Vol 3, 201215. http://dx.doi.org/10.1038/nrn755
11. Coull J. T. , Hwang H. J. , Leyton M. , Dagher A. ( 2012). "Dopamine precursor depletion impairs timing in healthy volunteers by attenuating activity in putamen and supplementary motor area". J. Neurosci., Vol 32, 1670416715. http://dx.doi.org/10.1523/JNEUROSCI.1258-12.2012
12. Cox R. W. ( 1996). "AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages". Comput. Biomed. Res., Vol 29, 162173. http://dx.doi.org/10.1006/cbmr.1996.0014
13. Dirnberger G. , Hesselmann G. , Roiser J. P. , Preminger S. , Jahanshahi M. , Paz R. ( 2012). "Give it time: Neural evidence for distorted time perception and enhanced memory encoding in emotional situations". Neuroimage, Vol 63, 591599. http://dx.doi.org/10.1016/j.neuroimage.2012.06.041
14. Eckert M. A. , Menon V. , Walczak A. , Ahlstrom J. , Denslow S. , Horwitz A. , Dubno J. R. ( 2009). "At the heart of the ventral attention system: The right anterior insula". Hum. Brain Mapp., Vol 30, 25302541. http://dx.doi.org/10.1002/hbm.20688
15. Fischl B. , Liu A. , Dale A. M. ( 2001). "Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex". IEEE Trans. Med. Imaging, Vol 20, 7080. http://dx.doi.org/10.1109/42.906426
16. Fischl B. , van der Kouwe A. , Destrieux C. , Halgren E. , Segonne F. , Salat D. H. , Busa E. , Seidman L. J. , Goldstein J. , Kennedy D. , Caviness V. , Makris N. , Rosen B. , Dale A. M. ( 2004). "Automatically parcellating the human cerebral cortex". Cereb. Cortex, Vol 14, 1122. http://dx.doi.org/10.1093/cercor/bhg087
17. Friston K. J. , Buechel C. , Fink G. R. , Morris J. , Rolls E. , Dolan R. J. ( 1997). "Psychophysiological and modulatory interactions in neuroimaging". Neuroimage, Vol 6, 218229. http://dx.doi.org/10.1006/nimg.1997.0291
18. Gibbon J. , Church R. M. , Meck W. H. ( 1984). "Scalar timing in memory". Ann. N. Y. Acad. Sci., Vol 423, 5277. http://dx.doi.org/10.1111/j.1749-6632.1984.tb23417.x
19. Harrington D. L. , Boyd L. A. , Mayer A. R. , Sheltraw D. M. , Lee R. R. , Huang M. , Rao S. M. ( 2004). "Neural representation of interval encoding and decision making". Cogn. Brain Res., Vol 21, 193205. http://dx.doi.org/10.1016/j.cogbrainres.2004.01.010
20. Harrington D. L. , Castillo G. N. , Fong C. H. , Reed J. D. ( 2011a). "Neural underpinnings of distortions in the experience of time across senses". Front. Integr. Neurosci., Vol 5, 32. http://dx.doi.org/10.3389/fnint.2011.00032
21. Harrington D. L. , Castillo G. N. , Greenberg P. A. , Song D. D. , Lessig S. , Lee R. R. , Rao S. M. ( 2011b). "Neurobehavioral mechanisms of temporal processing deficits in Parkinson’s disease". PLoS ONE, Vol 6, e17461. http://dx.doi.org/10.1371/journal.pone.0017461
22. Harrington D. L. , Haaland K. Y. , Hermanowicz N. ( 1998). "Temporal processing in the basal ganglia". Neuropsychology, Vol 12, 312. http://dx.doi.org/10.1037/0894-4105.12.1.3
23. Harrington D. L. , Zimbelman J. L. , Hinton S. C. , Rao S. M. ( 2010). "Neural modulation of temporal encoding, maintenance, and decision processes". Cereb. Cortex, Vol 20, 12741285. http://dx.doi.org/10.1093/cercor/bhp194
24. Jahanshahi M. , Jones C. R. , Zijlmans J. , Katzenschlager R. , Lee L. , Quinn N. , Frith C. D. , Lees A. J. ( 2010). "Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease". Brain, Vol 133, 727745. http://dx.doi.org/10.1093/brain/awq012
25. Klink P. C. , Montijn J. S. , van Wezel R. J. ( 2011). "Crossmodal duration perception involves perceptual grouping, temporal ventriloquism, and variable internal clock rates". Atten. Percept. Psychophys., Vol 73, 219236. http://dx.doi.org/10.3758/s13414-010-0010-9
26. Koch G. , Brusa L. , Caltagirone C. , Oliveri M. , Peppe A. , Tiraboschi P. , Stanzione P. ( 2004a). "Subthalamic deep brain stimulation improves time perception in Parkinson’s disease". NeuroReport, Vol 15, 10711073. http://dx.doi.org/10.1097/00001756-200404290-00028
27. Koch G. , Oliveri M. , Brusa L. , Stanzione P. , Torriero S. , Caltagirone C. ( 2004b). "High-frequency rTMS improves time perception in Parkinson disease". Neurology, Vol 63, 24052406. http://dx.doi.org/10.1212/01.WNL.0000147336.19972.82
28. Kosillo P. , Smith A. T. ( 2010). "The role of the human anterior insular cortex in time processing". Brain Struct. Funct., Vol 214, 623628. http://dx.doi.org/10.1007/s00429-010-0267-8
29. Kotz S. A. , Schwartze M. ( 2011). "Differential input of the supplementary motor area to a dedicated temporal processing network: Functional and clinical implications". Front. Integr. Neurosci., Vol 5, 86. http://dx.doi.org/10.3389/fnint.2011.00086
30. Lake J. I. , Meck W. H. ( 2013). "Differential effects of amphetamine and haloperidol on temporal reproduction: dopaminergic regulation of attention and clock speed". Neuropsychologia, Vol 51, 284292. http://dx.doi.org/10.1016/j.neuropsychologia.2012.09.014
31. Lee E. Y. , Cowan N. , Vogel E. K. , Rolan T. , Valle-Inc I. , Hackley S. A. ( 2010). "Visual working memory deficits in patients with Parkinson’s disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information". Brain, Vol 133, 26772689. http://dx.doi.org/10.1093/brain/awq197
32. Lee S. J. , Yoo J. Y. , Ryu J. S. , Park H. K. , Chung S. J. ( 2012). "The effects of visual and auditory cues on freezing of gait in patients with Parkinson disease". Am. J. Phys. Med. Rehabil., Vol 91, 211. http://dx.doi.org/10.1097/PHM.0b013e31823c7507
33. Livesey A. C. , Wall M. B. , Smith A. T. ( 2007). "Time perception: Manipulation of task difficulty dissociates clock functions from other cognitive demands". Neuropsychologia, Vol 45, 321331. http://dx.doi.org/10.1016/j.neuropsychologia.2006.06.033
34. Lustig C. , Meck W. H. ( 2011). "Modality differences in timing and temporal memory throughout the lifespan". Brain Cogn., Vol 77, 298303. http://dx.doi.org/10.1016/j.bandc.2011.07.007
35. Majsak M. J. , Kaminski T. , Gentile A. M. , Flanagan J. R. ( 1998). "The reaching movements of patients with Parkinson’s disease under self-determined maximal speed and visually cued conditions". Brain, Vol 121 (Pt 4), 755766. http://dx.doi.org/10.1093/brain/121.4.755
36. Malapani C. , Deweer B. , Gibbon J. ( 2002). "Separating storage from retrieval dysfunction of temporal memory in Parkinson’s disease". J. Cogn. Neurosci., Vol 14, 311322. http://dx.doi.org/10.1162/089892902317236920
37. Mannan S. K. , Hodgson T. L. , Husain M. , Kennard C. ( 2008). "Eye movements in visual search indicate impaired saliency processing in Parkinson’s disease". Prog. Brain Res., Vol 171, 559562.
38. Matell M. S. , Meck W. H. ( 2004). "Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes". Cogn. Brain Res., Vol 21, 139170. http://dx.doi.org/10.1016/j.cogbrainres.2004.06.012
39. Mayer A. R. , Franco A. R. , Canive J. , Harrington D. L. ( 2009). "The effects of stimulus modality and frequency of stimulus presentation on cross-modal distraction". Cereb. Cortex, Vol 19, 9931007. http://dx.doi.org/10.1093/cercor/bhn148
40. McIntosh G. C. , Brown S. H. , Rice R. R. , Thaut M. H. ( 1997). "Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease". J. Neurol. Neurosurg. Psychiatr., Vol 62, 2226. http://dx.doi.org/10.1136/jnnp.62.1.22
41. Meck W. H. ( 1996). "Neuropharmacology of timing and time perception". Cogn. Brain Res., Vol 3, 227242. http://dx.doi.org/10.1016/0926-6410(96)00009-2
42. Merchant H. , Harrington D. L. , Meck W. H. ( 2013a). "Neural basis of the perception and estimation of time". Annu. Rev. Neurosci., Vol 36, 313336. http://dx.doi.org/10.1146/annurev-neuro-062012-170349
43. Merchant H. , Luciana M. , Hooper C. , Majestic S. , Tuite P. ( 2008a). "Interval timing and Parkinson’s disease: Heterogeneity in temporal performance". Exp. Brain Res., Vol 184, 233248. http://dx.doi.org/10.1007/s00221-007-1097-7
44. Merchant H. , Perez O. , Zarco W. , Gamez J. ( 2013b). "Interval tuning in the primate medial premotor cortex as a general timing mechanism". J. Neurosci., Vol 33, 90829096. http://dx.doi.org/10.1523/JNEUROSCI.5513-12.2013
45. Merchant H. , Zarco W. , Prado L. ( 2008b). "Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks". J. Neurophysiol., Vol 99, 939949. http://dx.doi.org/10.1152/jn.01225.2007
46. Nagy A. , Eordegh G. , Paroczy Z. , Markus Z. , Benedek G. ( 2006). "Multisensory integration in the basal ganglia". Eur. J. Neurosci., Vol 24, 917924. http://dx.doi.org/10.1111/j.1460-9568.2006.04942.x
47. Nieuwboer A. , Vercruysse S. , Feys P. , Levin O. , Spildooren J. , Swinnen S. ( 2009). "Upper limb movement interruptions are correlated to freezing of gait in Parkinson’s disease". Eur. J. Neurosci., Vol 29, 14221430. http://dx.doi.org/10.1111/j.1460-9568.2009.06681.x
48. Palmer S. J. , Li J. , Wang Z. J. , McKeown M. J. ( 2010). "Joint amplitude and connectivity compensatory mechanisms in Parkinson’s disease". Neuroscience, Vol 166, 11101118. http://dx.doi.org/10.1016/j.neuroscience.2010.01.012
49. Pastor M. A. , Artieda J. , Jahanshahi M. , Obeso J. A. ( 1992). "Time estimation and reproduction is abnormal in Parkinson’s disease". Brain, Vol 115, 225.
50. Penney T. B. , Gibbon J. , Meck W. H. ( 2000). "Differential effects of auditory and visual signals on clock speed and temporal memory". J. Exp. Psychol. Hum. Percept. Perform., Vol 26, 17701787. http://dx.doi.org/10.1037/0096-1523.26.6.1770
51. Rammsayer T. , Classen W. ( 1997). "Impaired temporal discrimination in Parkinson’s disease: Temporal processing of brief durations as an indicator of degeneration of dopaminergic neurons in the basal ganglia". Int. J. Neurosci., Vol 91, 4555. http://dx.doi.org/10.3109/00207459708986364
52. Rao S. M. , Mayer A. R. , Harrington D. L. ( 2001). "The evolution of brain activation during temporal processing". Nat. Neurosci., Vol 4, 317323. http://dx.doi.org/10.1038/85191
53. Razmy A. , Lang A. E. , Shapiro C. M. ( 2004). "Predictors of impaired daytime sleep and wakefulness in patients with Parkinson disease treated with older (ergot) vs newer (nonergot) dopamine agonists". Arch. Neurol., Vol 61, 97102. http://dx.doi.org/10.1001/archneur.61.1.97
54. Repp B. H. , Penel A. ( 2002). "Auditory dominance in temporal processing: New evidence from synchronization with simultaneous visual and auditory sequences". J. Exp. Psychol. Hum. Percept. Perform., Vol 28, 10851099. http://dx.doi.org/10.1037/0096-1523.28.5.1085
55. Riesen J. M. , Schnider A. ( 2001). "Time estimation in Parkinson’s disease: Normal long duration estimation despite impaired short duration discrimination". J. Neurol., Vol 248, 2735.
56. Rowe J. B. ( 2010). "Connectivity analysis is essential to understand neurological disorders". Front. Syst. Neurosci., Vol 4, 144. http://dx.doi.org/10.3389/fnsys.2010.00144
57. Rowe J. B. , Hughes L. E. , Barker R. A. , Owen A. M. ( 2010). "Dynamic causal modelling of effective connectivity from fMRI: Are results reproducible and sensitive to Parkinson’s disease and its treatment?" Neuroimage, Vol 52, 10151026. http://dx.doi.org/10.1016/j.neuroimage.2009.12.080
58. Salvioni P. , Murray M. M. , Kalmbach L. , Bueti D. ( 2013). "How the visual brain encodes and keeps track of time". J. Neurosci., Vol 33, 1242312429. http://dx.doi.org/10.1523/JNEUROSCI.5146-12.2013
59. Spildooren J. , Vercruysse S. , Meyns P. , Vandenbossche J. , Heremans E. , Desloovere K. , Vandenberghe W. ( 2012). "Turning and unilateral cueing in Parkinson’s disease patients with and without freezing of gait". Neuroscience, Vol 207, 298306. http://dx.doi.org/10.1016/j.neuroscience.2012.01.024
60. Ulrich R. , Nitschke J. , Rammsayer T. ( 2006). "Crossmodal temporal discrimination: Assessing the predictions of a general pacemaker-counter model". Percept. Psychophys., Vol 68, 11401152. http://dx.doi.org/10.3758/BF03193716
61. Vercruysse S. , Spildooren J. , Heremans E. , Vandenbossche J. , Wenderoth N. , Swinnen S. P. , Vandenberghe W. , Nieuwboer A. ( 2012). "Abnormalities and cue dependence of rhythmical upper-limb movements in Parkinson patients with freezing of gait". Neurorehabil. Neural Repair, Vol 26, 636645. http://dx.doi.org/10.1177/1545968311431964
62. Wearden J. H. , Edwards H. , Fakhri M. , Percival A. ( 1998). "Why “sounds are judged longer than lights”: Application of a model of the internal clock in humans". Q. J. Exp. Psychol. B, Vol 51, 97120.
63. Wiener M. , Matell M. S. , Coslett H. B. ( 2011). "Multiple mechanisms for temporal processing". Front. Integr. Neurosci., Vol 5, 31. http://dx.doi.org/10.3389/fnint.2011.00031
64. Wittmann M. , van Wassenhove V. , Craig A. D. , Paulus M. P. ( 2010). "The neural substrates of subjective time dilation". Front. Hum. Neurosci., Vol 4, 2.
65. Wu T. , Chan P. , Hallett M. ( 2010a). "Effective connectivity of neural networks in automatic movements in Parkinson’s disease". Neuroimage, Vol 49, 25812587. http://dx.doi.org/10.1016/j.neuroimage.2009.10.051
66. Wu T. , Wang L. , Hallett M. , Chen Y. , Li K. , Chan P. ( 2011). "Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease". Neuroimage, Vol 55, 204215. http://dx.doi.org/10.1016/j.neuroimage.2010.11.074
67. Wu T. , Wang L. , Hallett M. , Li K. , Chan P. ( 2010b). "Neural correlates of bimanual anti-phase and in-phase movements in Parkinson’s disease". Brain, Vol 133, 23942409. http://dx.doi.org/10.1093/brain/awq151
68. Yu H. , Sternad D. , Corcos D. M. , Vaillancourt D. E. ( 2007). "Role of hyperactive cerebellum and motor cortex in Parkinson’s disease". Neuroimage, Vol 35, 222233. http://dx.doi.org/10.1016/j.neuroimage.2006.11.047
69. Zink C. F. , Pagnoni G. , Chappelow J. , Martin-Skurski M. , Berns G. S. ( 2006). "Human striatal activation reflects degree of stimulus saliency". Neuroimage, Vol 29, 977983. http://dx.doi.org/10.1016/j.neuroimage.2005.08.006
http://brill.metastore.ingenta.com/content/journals/10.1163/22134468-00002025
Loading

Article metrics loading...

/content/journals/10.1163/22134468-00002025
2014-05-19
2017-01-24

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Timing & Time Perception — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation