Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Imagined Temporal Groupings Tune Oscillatory Neural Activity for Processing Rhythmic Sounds

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Timing & Time Perception

Temporal patterns within complex sound signals, such as music, are not merely processed after they are heard. We also focus attention to upcoming points in time to aid perception, contingent upon regularities we perceive in the sounds’ inherent rhythms. Such organized predictions are endogenously maintained as meter— the patterning of sounds into hierarchical timing levels that manifest as strongand weakevents. Models of neural oscillations provide potential means for how meter could arise in the brain, but little evidence of dynamic neural activity has been offered. To this end, we conducted a study instructing participants to imagine two-based or three-based metric patterns over identical, equally-spaced sounds while we recorded the electroencephalogram (EEG). In the three-based metric pattern, multivariate analysis of the EEG showed contrasting patterns of neural oscillations between strong and weak events in the delta (2–4 Hz) and alpha (9–14 Hz), frequency bands, while theta (4–9 Hz) and beta (16–24 Hz) bands contrasted two hierarchically weaker events. In two-based metric patterns, neural activity did not drastically differ between strong and weak events. We suggest the findings reflect patterns of neural activation and suppression responsible for shaping perception through time.

Affiliations: 1: 1Department of Speech and Hearing Science, The Ohio State University, Columbus, OH 43210, USA ; 2: 2Department of Psychology, The Ohio State University, Columbus, OH 43210, USA

10.1163/22134468-03002042
/content/journals/10.1163/22134468-03002042
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1163/22134468-03002042
Loading

Data & Media loading...

1. Arnal L. J. ( 2012). "Predicting “when” using the motor system’s beta-band oscillations". Front. Hum. Neurosci , Vol 6, 225. doi:10.3389/fnhum.2012.00225.
2. Arnal L. H., & , Giraud A. L. ( 2012). "Cortical oscillations and sensory predictions". Trends Cogn. Sci. , Vol 16, 390398. http://dx.doi.org/10.1016/j.tics.2012.05.003
3. Arnal L. H ,., Doelling K. B. ,, & Poeppel D. (2014). "Delta–beta coupled oscillations underlie temporal prediction accuracy". Cereb. Cortex , bhu103. doi:10.1093/cercor/bhu103.
4. Bolger D. ,, Coull J. T., & , Schön D. ( 2014). "Metrical rhythm implicitly orients attention in time as indexed by improved target detection and left inferior parietal activation". J. Cogn. Neurosci., Vol 26, 593605. http://dx.doi.org/10.1162/jocn_a_00511
5. Brochard R. ,, Abecasis D. ,, Potter D. ,, Ragot R., & , Drake C. ( 2003). "The “ticktock” of our internal clock: Direct brain evidence of subjective accents in isochronous sequences". Psychol. Sci., Vol 14, 362366. http://dx.doi.org/10.1111/1467-9280.24441
6. Calderone D. J. ,, Lakatos P. ,, Butler P. D. ,, & Castellanos F. X. ( 2014). "Entrainment of neural oscillations as a modifiable substrate of attention". Trends Cogn. Sci. , Vol 18, 300309. http://dx.doi.org/10.1016/j.tics.2014.02.005
7. Castellanos N. P., & , Makarov V. A. ( 2006). "Recovering EEG brain signals: Artifact suppression with wavelet-enhanced independent component analysis". J. Neurosci. Meth. , Vol 158 , 300312. http://dx.doi.org/10.1016/j.jneumeth.2006.05.033
8. Cate A. D. ,, Herron T. J. ,, Yund E. W. ,, Stecker G. C. ,, Rinne T. ,, Kang X. ,, Petkov C. I. ,, Disbrow E. A., & , Woods D. L. ( 2009). "Auditory attention activates peripheral visual cortex". PLoS One, Vol 4, e4645. doi: 10.1371/journal.pone.0004645. http://dx.doi.org/10.1371/journal.pone.0004645
9. Doesburg S. M. ,, Green J. J. ,, McDonald J. J., & , Ward L. M. ( 2012). "Theta modulation of inter-regional gamma synchronization during auditory attention control". Brain Res., Vol 1431, 7785. http://dx.doi.org/10.1016/j.brainres.2011.11.005
10. Fries P. ,, Reynolds J. H. ,, Rorie A. E., & , Desimone R. ( 2001). "Modulation of oscillatory neuronal synchronization by selective visual attention". Science , Vol 291, 15601563. http://dx.doi.org/10.1126/science.1055465
11. Fujioka T. ,, Trainor L. J. ,, Large E. W., & , Ross B. ( 2009). Beta and gamma rhythms in human auditory cortex during musical beat processing. Ann. N.Y. Acad. Sci., 1169, 89–92.
12. Fujioka T. ,, Zendel B. R., & , Ross B. ( 2010). "Endogenous neuromagnetic activity for mental hierarchy of timing". J. Neurosci. , Vol 30, 34583466. http://dx.doi.org/10.1523/JNEUROSCI.3086-09.2010
13. Fujioka T. ,, Trainor L. J. ,, Large E. W., & , Ross B. ( 2012). "Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations". J. Neurosci., Vol 32, 17911902. http://dx.doi.org/10.1523/JNEUROSCI.4107-11.2012
14. Geller A. S. ,, Schleifer I. K. ,, Sederberg P. B. ,, Jacobs J., & , Kahana M. J. ( 2007). "PyEPL: A cross-platform experiment-programming library". Behav. Res. Meth. , Vol 39, 950958. http://dx.doi.org/10.3758/BF03192990
15. Giraud A. L., & , Poeppel D. ( 2012). "Cortical oscillations and speech processing: Emerging computational principles". Neurosci. Nat. Neurosci. , Vol 15, 511517. http://dx.doi.org/10.1038/nn.3063
16. Gomez-Ramirez M. ,, Kelly S. P. ,, Molholm S. ,, Sehatpour P. ,, Schwartz T. H., & , Foxe J. J. ( 2011). "Oscillatory sensory selection mechanisms during intersensory attention to rhythmic auditory and visual inputs: A human electro-corticographic investigation". J. Neurosci. , Vol 31, 1855618567. http://dx.doi.org/10.1523/JNEUROSCI.2164-11.2011
17. Gregoriou G. C. ,, Gotts S. J. ,, Zhou H., & , Desimone R. ( 2009). "High-frequency, long-range coupling between prefrontal and visual cortex during attention". Science , Vol 324, 12071210. http://dx.doi.org/10.1126/science.1171402
18. Grube M., & , Griffiths T. D. ( 2009). "Metrically-enhanced temporal coding and the subjective perception of rhythmic sequences". Cortex , Vol 45, 7279. http://dx.doi.org/10.1016/j.cortex.2008.01.006
19. Hartmann T. ,, Schlee W., & , Weisz N. ( 2012). "It’s only in your head: Expectancy of aversive auditory stimulation modulates stimulus-induced auditory cortical alpha desynchronization". Neuroimage , Vol 60, 170178. http://dx.doi.org/10.1016/j.neuroimage.2011.12.034
20. Henry M. J., & , Hermann B. ( 2014). "Low-frequency neural oscillations support dynamic attending in temporal context". Timing Time Percept. , Vol 2, 6286. http://dx.doi.org/10.1163/22134468-00002011
21. Huron D. ( 2006). Sweet anticipation: Music and the psychology of expectation . Cambridge, MA, USA: The MIT Press.
22. Iversen J. R. ,, Repp B. H., & , Patel A. D. ( 2009). "Top-down control of rhythm perception modulates early auditory responses". Ann. N.Y. Acad. Sci ., Vol 1169, 5873.
23. Jensen O. ,, Bonnefond M., & , VanRullen R. ( 2012). "An oscillatory mechanism for prioritizing salient unattended stimuli". Trends Cogn. Sci., Vol 15, 200206.
24. Jones M. R. ( 1976). "Time, our lost dimension: Toward a new theory of perception, attention, and memory". Psychol. Rev. , Vol 83, 323355. http://dx.doi.org/10.1037/0033-295X.83.5.323
25. Jones M. R. ,, & Boltz M. ( 1989). "Dynamic attending and responses to time". Psychol. Rev., Vol 96, 459491. http://dx.doi.org/10.1037/0033-295X.96.3.459
26. Klimesch W. ,, Sauseng P. ,, & Hanslmayr S. ( 2007). "EEG alpha oscillations: The inhibition-timing hypothesis". Brain Res. Rev. , Vol 53, 6388. http://dx.doi.org/10.1016/j.brainresrev.2006.06.003
27. Krishnan A. ,, Williams L. J. ,, McIntosh A. R., & , Abdi H. ( 2011). "Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review". Neuroimage , Vol 56, 455475. http://dx.doi.org/10.1016/j.neuroimage.2010.07.034
28. Lakatos P. ,, Karmos G. ,, Mehta A. D. ,, Ulbert I., & , Schroeder C. E. ( 2008). "Entrainment of neuronal oscillations as a mechanism of attentional selection". Science , Vol 320, 110113. http://dx.doi.org/10.1126/science.1154735
29. Large E. W. ,( 2008). "Resonating to musical rhythm: theory and experiment". In Grondin S. (Ed.). The psychology of time (pp. 189232). West Yorkshire, UK: Emerald.
30. Large E. W., & , Jones M. R. ( 1999). "The dynamics of attending: How we track time-varying events". Psychol. Rev. , Vol 106, 119159. http://dx.doi.org/10.1037/0033-295X.106.1.119
31. Large E. W., & , Snyder J. S. ( 2009). Pulse and meter as neural resonance. Ann. N.Y. Acad. Sci., 1169, 46–57.
32. Lerdahl F., & , Jackendoff R. ( 1983). A generative theory of tonal music . Cambridge, MA, USA: The MIT Press.
33. Levitt H. ( 1971). "Transformed up-down methods in psychoacoustics". J. Acoust. Soc. Am., Vol 49, 467477. http://dx.doi.org/10.1121/1.1912375
34. McIntosh A. R., & , Lobaugh N. J. ( 2004). Partial least squares analysis of neuroimaging data:
35. Applications and advances. Neuroimage, 23, S250–263.
36. Melloni L. ,, Schwiedrzik C. M. ,, Rodriguez E., & , Singer W. ( 2009). "(Micro)Saccades, corollary activity and cortical oscillations". Trends Cogn. Sci ., Vol 13, 239245.
37. Nozaradan S. ,, Peretz I. ,, Missal M., & , Mouraux A. ( 2011). "Tagging the neuronal entrainment to beat and meter". J. Neurosci., Vol 31, 1023410240. http://dx.doi.org/10.1523/JNEUROSCI.0411-11.2011
38. Nozaradan S. ,, Peretz I., & , Mouraux A. ( 2012). "Selective entrainment to beat and meter embedded in a musical rhythm". J. Neurosci. , Vol 32, 1757217581. http://dx.doi.org/10.1523/JNEUROSCI.3203-12.2012
39. Palmer C., & , Krumhansl C. L. ( 1990). "Mental representations of musical meter". J. Exp. Psychol. Hum. Percept Perform. , Vol 16, 728741. http://dx.doi.org/10.1037/0096-1523.16.4.728
40. Potter D. D. ,, Fenwick M. ,, Abecasis D., & , Brochard R. ( 2009). "Perceiving rhythm where none exists: Event-related potential (ERP) correlates of subjective accenting". Cortex , Vol 45, 103109. http://dx.doi.org/10.1016/j.cortex.2008.01.004
41. Repp B. H. ( 2005). "Sensorimotor synchronization: A review of the tapping literature". Psychol. Bull. Rev. , Vol 12, 969992. http://dx.doi.org/10.3758/BF03206433
42. Repp B. H., & , Su Y.-H. ( 2013). "Sensorimotor synchronization: A review of recent research (2006–2012)". Psychol. Bull. Rev. , Vol 20, 403452. http://dx.doi.org/10.3758/s13423-012-0371-2
43. Rodgers J. L. ( 1999). "The bootstrap, the jackknife, and the randomization test: A sampling taxonomy". Multivariate Behav. Res. , Vol 34, 441456. http://dx.doi.org/10.1207/S15327906MBR3404_2
44. Ronken D. ( 1970). "Monaural detection of a phase difference between clicks". J. Acoust. Soc. Am. , Vol 47, 10911099. http://dx.doi.org/10.1121/1.1912010
45. Rothermich K. ,, Schmidt-Kassow M., & , Kotz S. A. ( 2012). "Rhythm’s gonna get you: Regular meter facilitates semantic sentence processing". Neuropsychologia , Vol 50, 232244. http://dx.doi.org/10.1016/j.neuropsychologia.2011.10.025
46. Scavone G. ( 2001). RtAudio: A set of realtime audio i/o C++ classes [computer software]. McGill University, Montreal, QC, Canada.
47. Schaefer R. S. ,, Vlek R. J., & , Desain P. ( 2011). "Decomposing rhythm processing: Electroencephalography of perceived and self-imposed rhythmic patterns". Psychol. Res. Vol 75, 95106. http://dx.doi.org/10.1007/s00426-010-0293-4
48. Schroeder C. E., & , Lakatos P. ( 2009). "Low-frequency neuronal oscillations as instruments of sensory selection". Trends Neurosci., Vol 32, 918. http://dx.doi.org/10.1016/j.tins.2008.09.012
49. Snyder J. S., & , Large E. W. ( 2005). "Gamma-band activity reflects the metric structure of rhythmic tone sequences". Cogn. Brain Res. , Vol 24, 117126. http://dx.doi.org/10.1016/j.cogbrainres.2004.12.014
50. Soley G., & , Hannon E. E. ( 2010). "Infants prefer the musical meter of their own culture: A cross-cultural comparison". Dev. Psychol. , Vol 46, 286292. http://dx.doi.org/10.1037/a0017555
51. Tissen M. A. ,, Marsden J. F., & , Brown P. ( 2000). "Frequency analysis of EMG activity in patients with idiopathic torticollis". Brain , Vol 123, 677686. http://dx.doi.org/10.1093/brain/123.4.677
52. Van Boxtel A. ( 2001). "Optimal signal bandwidth for the recording of surface EMG activity of facial, jaw, oral, and neck muscles". Psychophysiology , Vol 38, 2234. http://dx.doi.org/10.1111/1469-8986.3810022
53. van Noorden L., & , Moelants D. ( 1999). "Resonance in the perception of musical pulse". J. New Music Res., Vol 28, 4366. http://dx.doi.org/10.1076/jnmr.28.1.43.3122
54. Ward L. ( 2003). "Synchronous neural oscillations and cognitive processes". Trends Cogn. Neurosci., Vol 7, 553559. http://dx.doi.org/10.1016/j.tics.2003.10.012
55. Weisz N ,, Hartmann T ,., Müller N ,., Lorenz I ,., & Obleser J . ( 2011). "Alpha rhythms in audition: Cognitive and clinical perspectives". Front. Psychol. Vol 2, 73. doi:10.3389/fpsyg.2011.00073.
http://brill.metastore.ingenta.com/content/journals/10.1163/22134468-03002042
Loading

Article metrics loading...

/content/journals/10.1163/22134468-03002042
2015-05-25
2018-07-18

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Timing & Time Perception — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation