Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Effect of Temporal Frequency Spectra of Flicker on Time Perception: Behavioral Testing and Simulations Using a Striatal Beat Frequency Model

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Timing & Time Perception

When a visually presented stimulus flickers, the perceived stimulus duration exceeds the actual duration. This effect is called ‘time dilation’. On the basis of recent electrophysiological findings, we hypothesized that this flicker induced time dilation is caused by distortions of the internal clock, which is composed of many oscillators with many intrinsic vibration frequencies. To examine this hypothesis, we conducted behavioral experiments and a neural simulation. In the behavioral experiments, we measured flicker induced time dilation at various flicker frequencies. The stimulus was either a steadily presented patch or a flickering patch. The temporal frequency spectrum of the flickering patch was either single peaked at 10.9, 15, or 30 Hz, peaked with a narrow band at 8–12 or 12–16 Hz, or peaked with broad band at 4–30 Hz. Time dilation was observed with 10.9 Hz, 15 Hz, 30 Hz, or 8–12 Hz flickers, but not with 12–16 Hz or 4–30 Hz flickers. These results indicate that both the peak frequency and the width of the frequency distribution contribute to time dilation. To explain our behavioral results in the context of a physiological model, we proposed a model that combined the Striatal Beat Frequency Model and neural entrainment. The simulation successfully predicted the effect of flicker frequency locality and frequency specificity on time dilation, as observed in the behavioral experiments.

Affiliations: 1: The University of Tokyo, Department of Life Sciences, 2-8-1 Komaba, Meguro-ku, Tokyo 153-8092 Japan

10.1163/22134468-03002049
/content/journals/10.1163/22134468-03002049
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1163/22134468-03002049
Loading

Data & Media loading...

1. Allman M. J. ,, & Meck W. H. (2012). "Pathophysiological distortions in time perception and timed performance". Brain , Vol 135, 656677. http://dx.doi.org/10.1093/brain/awr210
2. Allman M. J. ,, Teki S. , Griffiths T. D. ,, & Meck W. H. (2014). "Properties of the internal clock: First- and second-order principles of subjective time". Annu. Rev. Psychol ., Vol 65, 743771. http://dx.doi.org/10.1146/annurev-psych-010213-115117
3. Basar E. ,, Schurmann M. ,, Basar-Eroglu C. ,, & Karakas S. (1997). "Alpha oscillations in brain functioning: An integrative theory". Int. J. Psychophysiol ., Vol 26, 529. http://dx.doi.org/10.1016/S0167-8760(97)00753-8
4. Binetti N. ,, Lecce F. ,, & Doricchi F. (2012). "Time-dilation and time-contraction in an anisochronous and anisometric visual scenery". J. Vis ., Vol 12, 8.
5. Brown S. W. (1995). "Time, change, and motion: The effects of stimulus movement on temporal perception". Percept. Psychophys ., Vol 57, 105116. http://dx.doi.org/10.3758/BF03211853
6. Buhusi C. V. ,, & Meck W. H. (2005). "What makes us tick? Functional and neural mechanisms of interval timing". Nat. Rev. Neurosci ., Vol 6, 755765. http://dx.doi.org/10.1038/nrn1764
7. Buzsaki G. ,, & Mizuseki K. (2014). "The log-dynamic brain: How skewed distributions affect network operations". Nat. Rev. Neurosci ., Vol 15, 264278. http://dx.doi.org/10.1038/nrn3687
8. Chen L. (2014). "How may neural oscillators we need on sub- and supra-second intervals processing in the primate brain". Front. Psychol ., Vol 5, 1263.
9. Ding J. ,, Sperling G. ,, & Srinivasan R. (2006). "Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency". Cereb. Cortex , Vol 16, 10161029.
10. Droit-Volet S. ,, & Wearden J. (2002). "Speeding up an internal clock in children? Effects of visual flicker on subjective duration". Q. J. Exp. Psychol. B , Vol 55, 193211. http://dx.doi.org/10.1080/02724990143000252
11. Gu B. ,, van Rijn H. ,, & Meck W. H. (2015). "Oscillatory multiplexing of neural population codes for interval timing and working memory". Neurosci. Biobehav. Rev ., Vol 48, 160185. http://dx.doi.org/10.1016/j.neubiorev.2014.10.008
12. Hayashi M. J. ,, Kantele M. ,, Walsh V. ,, Carlson S. ,, & Kanai R. (2014). "Dissociable neuroanatomical correlates of subsecond and suprasecond time perception". J. Cogn. Neurosci., Vol 26, 16851693. http://dx.doi.org/10.1162/jocn_a_00580
13. Herbst S. K. ,, Javadi A. H. ,, van der Meer E. ,, & Busch N. A. (2013). How long depends on how fast–perceived flicker dilates subjective duration. PLoS One , Vol 8, e76074.
14. Johnston A. ,, Arnold D. H. ,, & Nishida S. (2006). "Spatially localized distortions of event time". Curr. Biol ., Vol 16, 472479. http://dx.doi.org/10.1016/j.cub.2006.01.032
15. Kanai R. ,, Paffen C. L. ,, Hogendoorn H. ,, & Verstraten F. A. (2006). "Time dilation in dynamic visual display". J. Vis ., Vol 6, 14211430.
16. Kaneko S. ,, & Murakami I. (2009). "Perceived duration of visual motion increases with speed". J. Vis ., Vol 9, 14.
17. Klimesch W. (2012). "Alpha-band oscillations, attention, and controlled access to stored information". Trends Cogn. Sci ., Vol 16, 606617. http://dx.doi.org/10.1016/j.tics.2012.10.007
18. Lewis P. A. ,, & Miall R. C. (2003a). "Brain activation patterns during mesurement of sub- and supra-second intervals". Neuropsychologia , Vol 41, 15831592. http://dx.doi.org/10.1016/S0028-3932(03)00118-0
19. Lewis P. A. ,, & Miall R. C. (2003b). "Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging". Curr. Opin. Neurobiol ., Vol 13, 250255. http://dx.doi.org/10.1016/S0959-4388(03)00036-9
20. Malapani C. ,, Rakitin B. ,, Levy R. ,, Meck W. H. ,, Deweer B. ,, Dubois B. ,, & Gibbon J. (1998). "Coupled temporal memories in Parkinson’s disease: A dopamine-related dysfunction". J. Cogn. Neurosci ., Vol 10, 316331. http://dx.doi.org/10.1162/089892998562762
21. Matell M. S. ,, & Meck W. H. (2004). "Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes". Cogn. Brain Res ., Vol 21, 139170. http://dx.doi.org/10.1016/j.cogbrainres.2004.06.012
22. Mauk M. D. ,, & Buonomano D. V. (2004). "The neural basis of temporal processing". Annu. Rev. Neurosci ., Vol 27, 307340. http://dx.doi.org/10.1146/annurev.neuro.27.070203.144247
23. Meck W. H. (1996). "Neuropharmacology of timing and time perception". Cogn. Brain Res ., Vol 3, 227242. http://dx.doi.org/10.1016/0926-6410(96)00009-2
24. Merchant H. ,, Harrington D. L. ,, & Meck W. H. (2013). "Neural basis of the perception and estimation of time". Annu. Rev. Neurosci ., Vol 36, 313336. http://dx.doi.org/10.1146/annurev-neuro-062012-170349
25. Morillon B. ,, Kell C. A. ,, & Giraud A. L. (2009). "Three stages and four neural systems in time estimation". J. Neurosci ., Vol 29, 1480314811. http://dx.doi.org/10.1523/JNEUROSCI.3222-09.2009
26. Oprisan S. A. ,, & Boutan C. (2008). "Prediction of entrainment and 1:1 phase-locked modes in two-neuron networks based on the phase resetting curve method". Int. J. Neurosci ., Vol 118, 867890. http://dx.doi.org/10.1080/00207450701750471
27. Oprisan S. A. ,, & Buhusi C. V. (2013). "Why noise is useful in functional and neural mechanisms of interval timing?" BMC Neurosci ., Vol 14, 84. http://dx.doi.org/10.1186/1471-2202-14-84
28. Ortega L. ,, & Lopez F. (2008). "Effects of visual flicker on subjective time in a temporal bisection task". Behav. Process ., Vol 78, 380386. http://dx.doi.org/10.1016/j.beproc.2008.02.004
29. Perkel D. H. ,, Schulman J. H. ,, Bullock T. H. ,, Moore G. P. ,, & Segundo J. P. (1964). "Pacemaker neurons: Effects of regularly spaced synaptic input". Science , Vol 145(3627), 6163. http://dx.doi.org/10.1126/science.145.3627.61
30. Plomp G. ,, Van Leeuwen C. ,, & Gepshtein S. (2012). "Perception of time in articulated visual events". Front. Psychol ., Vol 3, 564.
31. Regan D. (1977). "Steady-state evoked potentials". J. Opt. Soc. Am ., Vol 67, 14751489. http://dx.doi.org/10.1364/JOSA.67.001475
32. Schiffman H. R. ,, & Bobko D. J. (1974). "Effects of stimulus complexity on the perception of brief temporal intervals". J. Exp. Psychol ., Vol 103, 156159. http://dx.doi.org/10.1037/h0036794
33. Schurmann M. ,, Basar-Eroglu C. ,, & Basar E. (1998). Evoked EEG alpha oscillations in the cat brain—A correlate of primary sensory processing? Neurosci Lett , Vol 240, 4144. http://dx.doi.org/10.1016/S0304-3940(97)00926-9
34. Treisman M. ,, & Brogan D. (1992). "Time perception and the internal clock: Effects of visual flicker on the temporal oscillator". Eur. J. Cogn. Psychol ., Vol 4, 4170. http://dx.doi.org/10.1080/09541449208406242
35. Treisman M. ,, Cook N. ,, Naish P. L. ,, & MacCrone J. K. (1994). "The internal clock: Electroencephalographic evidence for oscillatory processes underlying time perception". Q. J. Exp. Psychol. A , Vol 47, 241289. http://dx.doi.org/10.1080/14640749408401112
36. Van Rijn H. ,, Gu B. M. ,, & Meck W. H. (2014). "Dedicated clock/timing-circuit theories of time perception and timed performance". Adv. Exp. Med. Biol ., Vol 829, 7599. http://dx.doi.org/10.1007/978-1-4939-1782-2_5
37. Van Wassenhove V. ,, Buonomano D. V. ,, Shimojo S. ,, & Shams L. (2008). "Distortions of subjective time perception within and across senses". PLoS One , Vol 3, e1437.
38. Van Wassenhove V. ,, Wittmann M. ,, Craig A. D. ,, & Paulus M. P. (2011). "Psychological and neural mechanisms of subjective time dilation". Front. Neurosci ., Vol 5, 56.
39. Walsh V. (2003). "A theory of magnitude: Common cortical metrics of time, space and quantity". Trends Cogn. Sci ., Vol 7, 483488. http://dx.doi.org/10.1016/j.tics.2003.09.002
40. Xuan B. ,, Zhang D. ,, He S. ,, & Chen X. (2007). "Larger stimuli are judged to last longer". J. Vis ., Vol 7, 2 15. http://dx.doi.org/10.1167/7.2.1
http://brill.metastore.ingenta.com/content/journals/10.1163/22134468-03002049
Loading

Article metrics loading...

/content/journals/10.1163/22134468-03002049
2015-12-10
2017-12-18

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Timing & Time Perception — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation