Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Reduced Vision Selectively Impairs Spatial Updating in Fall-prone Older Adults

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

The current study examined the role of vision in spatial updating and its potential contribution to an increased risk of falls in older adults. Spatial updating was assessed using a path integration task in fall-prone and healthy older adults. Specifically, participants conducted a triangle completion task in which they were guided along two sides of a triangular route and were then required to return, unguided, to the starting point. During the task, participants could either clearly view their surroundings (full vision) or visuo-spatial information was reduced by means of translucent goggles (reduced vision). Path integration performance was measured by calculating the distance and angular deviation from the participant’s return point relative to the starting point. Gait parameters for the unguided walk were also recorded. We found equivalent performance across groups on all measures in the full vision condition. In contrast, in the reduced vision condition, where participants had to rely on interoceptive cues to spatially update their position, fall-prone older adults made significantly larger distance errors relative to healthy older adults. However, there were no other performance differences between fall-prone and healthy older adults. These findings suggest that fall-prone older adults, compared to healthy older adults, have greater difficulty in reweighting other sensory cues for spatial updating when visual information is unreliable.

Affiliations: 1: 3Technology Research for Independent Living (TRIL) Centre, St. James’s Hospital, Dublin, Ireland


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation