Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Adapting the Crossmodal Congruency Task for Measuring the Limits of Visual–Tactile Interactions Within and Between Groups

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

For more content, see Seeing and Perceiving and Spatial Vision.

The crossmodal congruency task (CCT) is a commonly used paradigm for measuring visual–tactile interactions and how these may be influenced by discrepancies in space and time between the tactile target and visual distractors. The majority of studies which have used this paradigm have neither measured, nor attempted to control, individual variability in unisensory (tactile) performance. We have developed a version of the CCT in which unisensory baseline performance is constrained to enable comparisons within and between participant groups. Participants were instructed to discriminate between single and double tactile pulses presented to their dominant hand, at their own approximate threshold level. In Experiment 1, visual distractors were presented at −30 ms, 100 ms, 200 ms and 400 ms stimulus onset asynchronies. In Experiment 2, ipsilateral visual distractors were presented 0 cm, 21 cm, and 42 cm vertically from the target hand, and 42 cm in a symmetrical, contralateral position. Distractors presented −30 ms and 0 cm from the target produced a significantly larger congruency effect than at other time points and spatial locations. Thus, the typical limits of visual–tactile interactions were replicated using a version of the task in which baseline performance can be constrained. The usefulness of this approach is supported by the observation that tactile thresholds correlated with self-reported autistic traits in this non-clinical sample. We discuss the suitability of this adapted version of the CCT for measuring visual–tactile interactions in populations where unisensory tactile ability may differ within and between groups.

Affiliations: 1: 1School of Psychological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK; 2: 2Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK


Full text loading...


Data & Media loading...

1. Bair W. N. , Kiemel T. , Jeka J. J. , Clark J. E. ( 2012). "Development of multisensory reweighting is impaired for quiet stance control in children with developmental coordination disorder (DCD)", PLoS One Vol 7, e40932.
2. Baron-Cohen S. , Wheelwright S. , Skinner R. , Martin J. , Clubley E. ( 2001). "The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians", J. Autism Dev. Disord. Vol 31, 517.
3. Facoetti A. , Trussardi A. N. , Ruffino M. , Lorusso M. L. , Cattaneo C. , Galli R. , Molteni M. , Zorzi M. ( 2010). "Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia", J. Cogn. Neurosci. Vol 22, 10111025.
4. Foss-Feig J. H. , Kwakye L. D. , Cascio C. J. , Burnette C. P. , Kadivar H. , Stone W. L. , Wallace M. T. ( 2010). "An extended multisensory temporal binding window in autism spectrum disorders", Exp. Brain Res. Vol 203, 381389.
5. Galpin A. , Tipper S. P. , Dick J. P. R. , Poliakoff E. ( 2011). "Object affordance and spatial-compatibility effects in Parkinson’s disease", Cortex Vol 47, 332341.
6. Hairston W. D. , Burdette J. H. , Flowers D. L. , Wood F. B. , Wallace M. T. ( 2005). "Altered temporal profile of visual–auditory multisensory interactions in dyslexia", Exp. Brain Res. Vol 166, 474480.
7. Harrar V. , Tammam J. , Pérez-Bellido A. , Pitt A. , Stein J. , Spence C. ( 2014). "Multisensory integration and attention in developmental dyslexia", Curr. Biol. Vol 24, 531535.
8. Hillock-Dunn A. , Wallace M. T. ( 2012). "Developmental changes in the multisensory temporal binding window persist into adolescence", Dev. Sci. Vol 15, 688696.
9. Holmes N. P. , Sanabria D. , Calvert G. A. , Spence C. ( 2006). "Multisensory interactions follow the hands across the midline: evidence from a non-spatial visual–tactile congruency task", Brain Res. Vol 1077, 108115.
10. Holmes N. P. , Spence C. , Hansen P. C. , Mackay C. E. , Calvert G. ( 2008). "The multisensory attentional consequences of tool use: a functional magnetic imaging study", PLoS One Vol 3, e3502.
11. Hsiao S. ( 1998). "Similarities between touch and vision", in: Neural Aspects of Tactile Sensation, Morley J. (Ed.), Advances in Psychology, Vol Vol. 14, 1st edn., pp.  131165. North Holland, Amsterdam, The Netherlands.
12. Kwakye L. D. , Foss-Feig J. H. , Cascio C. J. , Stone W. L. , Wallace M. T. ( 2011). "Altered auditory and multisensory temporal processing in autism spectrum disorders", Front. Integr. Neurosci. Vol 4, 111.
13. Lloyd D. M. ( 2007). "Spatial limits on referred touch to an alien limb may reflect boundaries of visuo-tactile peripersonal space surrounding the hand", Brain Cogn. Vol 64, 104109.
14. Loftus G. R. , Masson M. E. J. ( 1994). "Using confidence intervals in within-subjects designs", Psychonom. Bull. Rev. Vol 1, 476490.
15. Maravita A. , Spence C. , Sergent C. , Driver J. ( 2002). "Seeing your own touched hands in a mirror modulates cross-modal interactions", Psychol. Sci. Vol 13, 350355.
16. Maravita A. , Spence C. , Driver J. ( 2003). "Multisensory integration and the body schema: close to hand and within reach", Curr. Biol. Vol 13, 531539.
17. Oldfield R. C. ( 1971). "The assessment and analysis of handedness: the Edinburgh inventory", Neuropsychologia Vol 9, 97113.
18. Pavani F. , Spence C. , Driver J. ( 2000). "Visual capture of touch: out-of-the-body experiences with rubber gloves", Psychol. Sci. Vol 11, 353359.
19. Poliakoff E. , Ashworth S. , Lowe C. , Spence C. ( 2006). "Vision and touch in ageing: crossmodal selective attention and visuotactile spatial interactions", Neuropsychologia Vol 44, 507517.
20. Robertson A. E. , Simmons D. R. ( 2013). "The relationship between sensory sensitivity and autistic traits in the general population", J. Autism Dev. Disord. Vol 43, 775784.
21. Shore D. I. , Barnes M. E. , Spence C. ( 2006). "Temporal aspects of the visuotactile congruency effect", Neurosci. Lett. Vol 392, 96100.
22. Spence C. ( 2013). "Just how important is spatial coincidence to multisensory integration? Evaluating the spatial rule", Ann. N. Y. Acad. Sci. Vol 1296, 119.
23. Spence C. , Walton M. ( 2005). "On the inability to ignore touch when responding to vision in the crossmodal congruency task", Acta Psychol. Vol 118, 4770.
24. Spence C. , Pavani F. , Driver J. ( 1998). "What crossing the hands can reveal about crossmodal links in spatial attention", Abstr. Psychonom. Soc. Vol 3, 13.
25. Spence C. , Kingstone A. , Shore D. I. , Gazzaniga M. S. ( 2001). "Representation of visuotactile space in the split brain", Psychol. Sci. Vol 12, 9093.
26. Spence C. , Pavani F. , Driver J. ( 2004). "Spatial constraints on visual–tactile crossmodal distractor congruency effects", Cogn. Affect. Behav. Neurosci. Vol 4, 148169.
27. Stein B. E. , Stanford T. R. ( 2008). "Multisensory integration: current issues from the perspective of the single neuron", Nat. Rev. Neurosci. Vol 9, 255266.
28. Stekelenburg J. J. , Maes J. P. , Van Gool A. R. , Sitskoorn M. , Vroomen J. ( 2013). "Deficient multisensory integration in schizophrenia: an event-related potential study", Schizophrenia Res. Vol 147, 253261.
29. Stevenson R. , Fister J. K. , Barnett Z. P. , Nidiffer A. R. , Wallace M. T. ( 2012). "Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance", Exp. Brain Res. Vol 219, 121137.
30. Taylor M. M. , Creelman C. D. ( 1967). "PEST: efficient estimates on probability functions", J. Acoust. Soc. Am. Vol 41, 49.
31. Tommerdahl M. , Tannan V. , Holden J. K. , Baranek G. T. ( 2008). "Absence of stimulus-driven synchronization effects on sensory perception in autism: evidence for local underconnectivity?" Behav. Brain Funct. Vol 4, 19.
32. Van Selst M. , Jolicoeur P. ( 1994). "A solution to the effect of sample size on outlier elimination", Q. J. Exp. Psychol. Vol 47, 631650.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation