Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Movement Induces the Use of External Spatial Coordinates for Tactile Localization in Congenitally Blind Humans

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

To localize touch, the brain integrates spatial information coded in anatomically based and external spatial reference frames. Sighted humans, by default, use both reference frames in tactile localization. In contrast, congenitally blind individuals have been reported to rely exclusively on anatomical coordinates, suggesting a crucial role of the visual system for tactile spatial processing. We tested whether the use of external spatial information in touch can, alternatively, be induced by a movement context. Sighted and congenitally blind humans performed a tactile temporal order judgment task that indexes the use of external coordinates for tactile localization, while they executed bimanual arm movements with uncrossed and crossed start and end postures. In the sighted, start posture and planned end posture of the arm movement modulated tactile localization for stimuli presented before and during movement, indicating automatic, external recoding of touch. Contrary to previous findings, tactile localization of congenitally blind participants, too, was affected by external coordinates, though only for stimuli presented before movement start. Furthermore, only the movement’s start posture, but not the planned end posture affected blind individuals’ tactile performance. Thus, integration of external coordinates in touch is established without vision, though more selectively than when vision has developed normally, and possibly restricted to movement contexts. The lack of modulation by the planned posture in congenitally blind participants suggests that external coordinates in this group are not mediated by motor efference copy. Instead the task-related frequent posture changes, that is, movement consequences rather than planning, appear to have induced their use of external coordinates.

Affiliations: 1: 1Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany


Full text loading...


Data & Media loading...

1. Alais D. , Burr D. ( 2004). "The ventriloquist effect results from near-optimal bimodal integration", Curr. Biol. Vol 14, 257262.
2. Azañón E. , Camacho K. , Soto-Faraco S. ( 2010). "Tactile remapping beyond space", Eur. J. Neurosci. Vol 31, 18581867.
3. Azañón E. , Stenner M.-P. , Cardini F. , Haggard P. ( 2015). "Dynamic tuning of tactile localization to body posture", Curr. Biol. Vol 25, 512517.
4. Badde S. , Heed T. , Röder B. ( 2014a). "Processing load impairs coordinate integration for the localization of touch", Atten. Percept. Psychophys. Vol 76, 11361150.
5. Badde S. , Röder B. , Heed T. ( 2014b). "Multiple spatial representations determine touch localization on the fingers", J. Exp. Psychol. Vol 40, 784801.
6. Badde S. , Röder B. , Heed T. ( in press). "Flexibly weighted integration of tactile reference frames", Neuropsychologia. DOI: .
7. Barr D. J. , Levy R. , Scheepers C. , Tily H. J. ( 2013). "Random effects structure for confirmatory hypothesis testing: keep it maximal", J. Mem. Lang. Vol 68, 255278.
8. Bates D. , Maechler M. , Bolker B. ( 2013). lme4: linear mixed-effects models using S4 classes. R package version 1.1-7, .
9. Bolker B. M. , Brooks M. E. , Clark C. J. , Geange S. W. , Poulsen J. R. , Stevens M. H. H. , White J.-S. S. ( 2009). "Generalized linear mixed models: a practical guide for ecology and evolution", Trends Ecol. Evol. Vol 24, 127135.
10. Bremner A. J. , Hill E. L. , Pratt M. , Rigato S. , Spence C. ( 2013). "Bodily illusions in young children: developmental change in visual and proprioceptive contributions to perceived hand position", PLoS One Vol 8, e51887. DOI: .
11. Buchholz V. N. , Goonetilleke S. C. , Medendorp W. P. , Corneil B. D. ( 2012). "Greater benefits of multisensory integration during complex sensorimotor transformations", J. Neurophysiol. Vol 107, 31353143.
12. Buchholz V. N. , Jensen O. , Medendorp W. P. ( 2014). "Different roles of alpha and beta band oscillations in anticipatory sensorimotor gating", Front Hum. Neurosci. Vol 8, 446. DOI: .
13. Buchholz V. N. , Jensen O. , Medendorp W. P. ( 2011). "Multiple reference frames in cortical oscillatory activity during tactile remapping for saccades", J. Neurosci. Vol 31, 1686416871.
14. Buchholz V. N. , Jensen O. , Medendorp W. P. ( 2013). "Parietal oscillations code nonvisual reach targets relative to gaze and body", J. Neurosci. Vol 33, 34923499.
15. Cadieux M. L. , Barnett-Cowan M. , Shore D. I. ( 2010). "Crossing the hands is more confusing for females than males", Exp. Brain Res. Vol 204, 431446.
16. Cohen Y. E. , Andersen R. A. ( 2002). "A common reference frame for movement plans in the posterior parietal cortex", Nat. Rev. Neurosci. Vol 3, 553562.
17. Collignon O. , Charbonneau G. , Lassonde M. , Lepore F. ( 2009). "Early visual deprivation alters multisensory processing in peripersonal space", Neuropsychologia Vol 47, 32363243.
18. de Haan A. M. , Anema H. A. , Dijkerman H. C. ( 2012). "Fingers crossed! An investigation of somatotopic representations using spatial directional judgements", PLoS One Vol 7( 9), e45408. DOI: .
19. Eardley A. F. , van Velzen J. ( 2011). "Event-related potential evidence for the use of external coordinates in the preparation of tactile attention by the early blind", Eur. J. Neurosci. Vol 33, 18971907.
20. Ernst M. O. , Banks M. S. ( 2002). "Humans integrate visual and haptic information in a statistically optimal fashion", Nature Vol 415( 6870), 429433.
21. Gillmeister H. , Forster B. ( 2011). "Hands behind your back: effects of arm posture on tactile attention in the space behind the body", Exp. Brain Res. Vol 216, 489497.
22. Heed T. , Azañón E. ( 2014). "Using time to investigate space: a review of tactile temporal order judgments as a window onto spatial processing in touch", Front. Psychol. Vol 5, 76. DOI: .
23. Heed T. , Backhaus J. , Röder B. ( 2012). "Integration of hand and finger location in external spatial coordinates for tactile localization", J. Exp. Psychol. Hum. Percept. Perform. Vol 38( 2), 386401.
24. Heed T. , Röder B. ( 2010). "Common anatomical and external coding for hands and feet in tactile attention: evidence from event-related potentials", J. Cogn. Neurosci. Vol 22, 184202.
25. Heed T. , Röder B. ( 2014). "Motor coordination uses external spatial coordinates independent of developmental vision", Cognition Vol 132, 115.
26. Hermosillo R. , Ritterband-Rosenbaum A. , van Donkelaar P. ( 2011). "Predicting future sensorimotor states influences current temporal decision making", J. Neurosci. Vol 31, 1001910022.
27. Jaeger T. F. ( 2008). "Categorical data analysis: away from ANOVAs (transformation or not) and towards logit mixed models", J. Mem. Lang. Vol 59, 434446.
28. Lawrence M. A. ( 2013). Easy analysis and visualization of factorial experiments. R package version 4.2-2, .
29. Lenth R. V. ( 2014). lsmeans: least-squares means. R package version 2.12, .
30. Medendorp W. P. , Goltz H. C. , Vilis T. ( 2005). "Remapping the remembered target location for anti-saccades in human posterior parietal cortex", J. Neurophysiol. Vol 94, 734740.
31. Mueller S. , Fiehler K. ( 2014a). "Effector movement triggers gaze-dependent spatial coding of tactile and proprioceptive-tactile reach targets", Neuropsychologia Vol 62, 184193.
32. Mueller S. , Fiehler K. ( 2014b). "Gaze-dependent spatial updating of tactile targets in a localization task", Front. Psychol. Vol 5, 66. DOI: .
33. Pagel B. , Heed T. , Röder B. ( 2009). "Change of reference frame for tactile localization during child development", Dev. Sci. Vol 12, 929937.
34. Pouget A. , Ducom J.-C. , Torri J. , Bavelier D. ( 2002). "Multisensory spatial representations in eye-centered coordinates for reaching", Cognition Vol 83, B1B11.
35. Pritchett L. M. , Carnevale M. J. , Harris L. R. ( 2012). "Reference frames for coding touch location depend on the task", Exp. Brain Res. Vol 222, 437445.
36. R Core Team( 2014). R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
37. Reuschel J. , Rösler F. , Henriques D. Y. P. , Fiehler K. ( 2012). "Spatial updating depends on gaze direction even after loss of vision", J. Neurosci. Vol 32, 24222429.
38. Roberts R. D. , Humphreys G. W. ( 2008). "Task effects on tactile temporal order judgments: when space does and does not matter", J. Exp. Psychol. Hum. Percept. Perform. Vol 34, 592604.
39. Röder B. , Föcker J. , Hötting K. , Spence C. ( 2008). "Spatial coordinate systems for tactile spatial attention depend on developmental vision: evidence from event-related potentials in sighted and congenitally blind adult humans", Eur. J. Neurosci. Vol 28, 475483.
40. Röder B. , Heed T. , Badde S. ( 2014). "Development of the spatial coding of touch: ability vs.automaticity", Dev. Sci. Vol 17, 944945.
41. Röder B. , Kusmierek A. , Spence C. , Schicke T. ( 2007). "Developmental vision determines the reference frame for the multisensory control of action", Proc. Natl Acad. Sci. USA Vol 104, 47534758.
42. Röder B. , Pagel B. , Heed T. ( 2013). "The implicit use of spatial information develops later for crossmodal than for intramodal temporal processing", Cognition Vol 126, 301306.
43. Röder B. , Rösler F. , Spence C. ( 2004). "Early vision impairs tactile perception in the blind", Curr. Biol. Vol 14, 121124.
44. Shore D. I. , Spry E. , Spence C. ( 2002). "Confusing the mind by crossing the hands", Cogn. Brain Res. Vol 14, 153163.
45. Singmann H. ( 2014). afex: analysis of factorial experiments. R package version 0.11-126, .
46. Thinus-Blanc C. , Gaunet F. ( 1997). "Representation of space in blind persons: vision as a spatial sense?" Psychol. Bull. Vol 121, 2042.
47. Wickham H. ( 2009). Ggplot2: Elegant Graphics for Data Analysis. Springer, New York, NY, USA.
48. Wolpert D. M. , Ghahramani Z. , Jordan M. I. ( 1995). "An internal model for sensorimotor integration", Science Vol 269( 5232), 18801882.
49. Yamamoto S. , Kitazawa S. ( 2001). "Reversal of subjective temporal order due to arm crossing", Nat. Neurosci. Vol 4, 759765.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation