Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Above the Mean: Examining Variability in Behavioral and Neural Responses to Multisensory Stimuli

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

Even when experimental conditions are kept constant, a robust and consistent finding in both behavioral and neural experiments designed to examine multisensory processing is striking variability. Although this variability has often been considered uninteresting noise (a term that is laden with strong connotations), emerging work suggests that differences in variability may be an important aspect in describing differences in performance between individuals and groups. In the current review, derived from a symposium at the 2015 International Multisensory Research Forum in Pisa, Italy, we focus on several aspects of variability as it relates to multisensory function. This effort seeks to expand our understanding of variability at levels of coding and analysis ranging from the single neuron through large networks and on to behavioral processes, and encompasses a number of the multimodal approaches that are used to evaluate and characterize multisensory processing including single-unit neurophysiology, electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and electrocorticography (ECoG).

Please see http://dx.doi.org/10.1163/22134808-00002540

Affiliations: 1: 1Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA ; 2: 2Department of Cognitive Psychology, University of Oldenburg, Oldenburg, Germany ; 3: 3Department of Psychology, Carl-von-Ossietzky University, Oldenburg, Germany ; 4: 4Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA

*To whom correspondence should be addressed. E-mail: sarah.h.baum@vanderbilt.edu
Loading

Full text loading...

/content/journals/10.1163/22134808-00002536
Loading

Data & Media loading...

1. Adamo N. , Huo L. , Adelsberg S. , Petkova E. , Castellanos F. X. , Di Martino A. (2014). "Response time intra-subject variability: commonalities between children with autism spectrum disorders and children with ADHD", Eur. Child Adolesc. Psychiatry Vol 23, 6979. http://dx.doi.org/10.1007/s00787-013-0428-4
2. Alais D. , Newell F. N. , Mamassian P. (2010). "Multisensory processing in review: from physiology to behaviour", Seeing Perceiving Vol 23, 338. http://dx.doi.org/10.1163/187847510X488603
3. Baum S. H. , Beauchamp M. S. (2014). "Greater BOLD variability in older compared with younger adults during audiovisual speech perception", PLoS ONE Vol 9, e111121. DOI:. http://dx.doi.org/10.1371/journal.pone.0111121
4. Baum S. H. , Stevenson R. A. , Wallace M. T. (2015). "Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder", Progr. Neurobiol. Vol 134, 140160. http://dx.doi.org/10.1016/j.pneurobio.2015.09.007
5. Beck J. M. , Ma W. J. , Pitkow X. , Latham P. E. , Pouget A. (2012). "Not noisy, just wrong: the role of suboptimal inference in behavioral variability", Neuron Vol 74, 3039. http://dx.doi.org/10.1016/j.neuron.2012.03.016
6. Bielak A. A. , Hultsch D. F. , Strauss E. H. , Macdonald S. W. , Hunter M. A. (2010a). "Intraindividual variability is related to cognitive change in older adults: evidence for within-person coupling", Psychol. Aging Vol 25, 575586. http://dx.doi.org/10.1037/a0019503
7. Bielak A. A. , Hultsch D. F. , Strauss E. H. , Macdonald S. W. , Hunter M. A. (2010b). "Intraindividual variability in reaction time predicts cognitive outcomes 5 years later", Neuropsychology Vol 24, 731741. http://dx.doi.org/10.1037/a0019802
8. Calvert G. A. , Spence C. , Stein B. E. (2004). Handbook of Multisensory Processes. MIT Press, Cambridge, MS, USA.
9. Cappe C. , Thut G. , Romei V. , Murray M. M. (2009). "Selective integration of auditory–visual looming cues by humans", Neuropsychologia Vol 47, 10451052. http://dx.doi.org/10.1016/j.neuropsychologia.2008.11.003
10. Cappe C. , Thut G. , Romei V. , Murray M. M. (2010). "Auditory–visual multisensory interactions in humans: timing, topography, directionality, and sources", J. Neurosci. Vol 30, 1257212580. http://dx.doi.org/10.1523/JNEUROSCI.1099-10.2010
11. Cappe C. , Thelen A. , Romei V. , Thut G. , Murray M. M. (2012). "Looming signals reveal synergistic principles of multisensory integration", J. Neurosci. Vol 32, 11711182. http://dx.doi.org/10.1523/JNEUROSCI.5517-11.2012
12. Cerella J. , Hale S. (1994). "The rise and fall in information-processing rates over the life span", Acta Psychol. Vol 86, 109197. http://dx.doi.org/10.1016/0001-6918(94)90002-7
13. Christen M. , Kohn A. , Ott T. , Stoop R. (2006). "Measuring spike pattern reliability with the Lempel–Ziv-distance", J. Neurosci. Methods Vol 156, 342350. http://dx.doi.org/10.1016/j.jneumeth.2006.02.023
14. Christensen K. , Olami Z. , Bak P. (1992). "Deterministic 1 ∕ f noise in nonconserative models of self-organized criticality", Phys. Rev. Lett. Vol 68, 24172420. http://dx.doi.org/10.1103/PhysRevLett.68.2417
15. Colonius H. , Diederich A. (2006). "The race model inequality: interpreting a geometric measure of the amount of violation", Psychol. Rev. Vol 113, 148154. http://dx.doi.org/10.1037/0033-295X.113.1.148
16. Colonius H. , Diederich A. (2015). A new measure of multisensory integration in a single neuron based on dependent probability summation. Available at .
17. Cox R. W. (1996). "AFNI: software for analysis and visualization of functional magnetic resonance neuroimages", Comput. Biomed. Res. Vol 29, 162173. http://dx.doi.org/10.1006/cbmr.1996.0014
18. Di Martino A. , Ghaffari M. , Curchack J. , Reiss P. , Hyde C. , Vannucci M. , Petkova E. , Klein D. F. , Castellanos F. X. (2008). "Decomposing intra-subject variability in children with attention-deficit/hyperactivity disorder", Biol. Psychiatry Vol 64, 607614. http://dx.doi.org/10.1016/j.biopsych.2008.03.008
19. Dutta P. , Horn P. M. (1981). "Low-frequency fluctuations in solids: 1 ∕ f noise", Rev. Modern Phys. Vol 53, 497499. http://dx.doi.org/10.1103/RevModPhys.53.497
20. Engel A. K. , Fries P. , Singer W. (2001). "Dynamic predictions: oscillations and synchrony in top–down processing", Nat. Rev. Neurosci. Vol 2, 704716. http://dx.doi.org/10.1038/35094565
21. Fries P. (2015). "Rhythms for cognition: communication through coherence", Neuron Vol 88, 220235. http://dx.doi.org/10.1016/j.neuron.2015.09.034
22. Garrett D. D. , Kovacevic N. , Mcintosh A. R. , Grady C. L. (2011). "The importance of being variable", J. Neurosci. Vol 31, 44964503. http://dx.doi.org/10.1523/JNEUROSCI.5641-10.2011
23. Garrett D. D. , Macdonald S. W. , Craik F. I. (2012). "Intraindividual reaction time variability is malleable: feedback- and education-related reductions in variability with age", Front. Hum. Neurosci. Vol 6, 101. DOI:. http://dx.doi.org/10.3389/fnhum.2012.00101
24. Hedden T. , Gabrieli J. D. (2004). "Insights into the ageing mind: a view from cognitive neuroscience", Nat. Rev. Neurosci. Vol 5, 8796. http://dx.doi.org/10.1038/nrn1323
25. Hultsch D. F. , Macdonald S. W. , Dixon R. A. (2002). "Variability in reaction time performance of younger and older adults", J. Gerontol. B, Psychol. Sci. Soc. Sci. Vol 57, P101P115. http://dx.doi.org/10.1093/geronb/57.2.P101
26. Jenkins L. , Myerson J. , Joerding J. A. , Hale S. (2000). "Converging evidence that visuospatial cognition is more age-sensitive than verbal cognition", Psychol. Aging Vol 15, 157175. http://dx.doi.org/10.1037/0882-7974.15.1.157
27. Kriegeskorte N. , Mur M. , Bandettini P. (2008). "Representational similarity analysis — connecting the branches of systems neuroscience", Front. Syst. Neurosci. Vol 2, 4. DOI:.
28. Kubanek J. , Brunner P. , Gunduz A. , Poeppel D. , Schalk G. (2013). "The tracking of speech envelope in the human cortex", PLoS ONE Vol 8, e53398. DOI:. http://dx.doi.org/10.1371/journal.pone.0053398
29. Lovden M. , Li S. C. , Shing Y. L. , Lindenberger U. (2007). "Within-person trial-to-trial variability precedes and predicts cognitive decline in old and very old age: longitudinal data from the Berlin Aging Study", Neuropsychologia Vol 45, 28272838. http://dx.doi.org/10.1016/j.neuropsychologia.2007.05.005
30. Lovden M. , Schmiedek F. , Kennedy K. M. , Rodrigue K. M. , Lindenberger U. , Raz N. (2013). "Does variability in cognitive performance correlate with frontal brain volume?" NeuroImage Vol 64, 209215. http://dx.doi.org/10.1016/j.neuroimage.2012.09.039
31. MacDonald S. W. , Karlsson S. , Rieckmann A. , Nyberg L. , Backman L. (2012). "Aging-related increases in behavioral variability: relations to losses of dopamine D1 receptors", J. Neurosci. Vol 32, 81868191. http://dx.doi.org/10.1523/JNEUROSCI.5474-11.2012
32. Mercier M. R. , Molholm S. , Fiebelkorn I. C. , Butler J. S. , Schwartz T. H. , Foxe J. J. (2015). "Neuro-oscillatory phase alignment drives speeded multisensory response times: an electro-corticographic investigation", J. Neurosci. Vol 35, 85468557. http://dx.doi.org/10.1523/JNEUROSCI.4527-14.2015
33. Morrell L. K. , Morrell F. (1966). "Evoked potentials and reaction times: a study of intra-individual variability", Electroencephalogr. Clin. Neurophysiol. Vol 20, 567575. http://dx.doi.org/10.1016/0013-4694(66)90021-6
34. Murphy K. J. , West R. , Armilio M. L. , Craik F. I. , Stuss D. T. (2007). "Word-list-learning performance in younger and older adults: intra-individual performance variability and false memory", Neuropsychol., Dev. Cogn. B Aging Neuropsychol. Cogn. Vol 14, 7094. http://dx.doi.org/10.1080/138255890969726
35. Murray M. M. , Foxe J. J. , Wylie G. R. (2005). "The brain uses single-trial multisensory memories to discriminate without awareness", NeuroImage Vol 27, 473478. http://dx.doi.org/10.1016/j.neuroimage.2005.04.016
36. Murray M. M. , Wallace M. T. (2012). The Neural Bases of Multisensory Processes. CRC Press, Boca Raton, FL, USA.
37. Nath A. R. , Beauchamp M. S. (2011). "Dynamic changes in superior temporal sulcus connectivity during perception of noisy audiovisual speech", J. Neurosci. Vol 31, 17041714. http://dx.doi.org/10.1523/JNEUROSCI.4853-10.2011
38. Ohtsuki H. , Hauert C. , Lieberman E. , Nowak M. A. (2006). "A simple rule for the evolution of cooperation on graphs and social networks", Nature Vol 441, 502505. http://dx.doi.org/10.1038/nature04605
39. Oostenveld R. , Fries P. , Maris E. , Schoffelen J. M. (2011). "FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data", Comput. Intell. Neurosci. Vol 2011, 156869. DOI:. http://dx.doi.org/10.1155/2011/156869
40. Peich M. C. , Husain M. , Bays P. M. (2013). "Age-related decline of precision and binding in visual working memory", Psychol. Aging Vol 28, 729743. http://dx.doi.org/10.1037/a0033236
41. Romei V. , Murray M. M. , Cappe C. , Thut G. (2013). "The contributions of sensory dominance and attentional bias to cross-modal enhancement of visual cortex excitability", J. Cogn. Neurosci. Vol 25, 11221135. http://dx.doi.org/10.1162/jocn_a_00367
42. Ross L. A. , Saint-Amour D. , Leavitt V. M. , Javitt D. C. , Foxe J. J. (2007). "Do you see what I am saying? Exploring visual enhancement of speech comprehension in noisy environments", Cereb. Cortex Vol 17, 11471153. http://dx.doi.org/10.1093/cercor/bhl024
43. Ross S. M. (2006). Simulation. Academic Press, Burlington, MA, USA.
44. Sarko D. K. , Nidiffer A. R. , Powers I. A. , Ghose D. , Hillock-Dunn A. , Fister M. C. , Krueger J. , Wallace M. T. (2012). "Spatial and temporal features of multisensory processes: bridging animal and human studies", in: The Neural Bases of Multisensory Processes, Murray M. M. , Wallace M. T. (Eds), pp.  192216. CRC Press, Boca Raton, FL, USA.
45. Sperdin H. F. , Cappe C. , Foxe J. J. , Murray M. M. (2009). "Early, low-level auditory-somatosensory multisensory interactions impact reaction time speed", Front. Integr. Neurosci. Vol 3, 2. DOI:. http://dx.doi.org/10.3389/neuro.07.002.2009
46. Stanford T. R. , Quessy S. , Stein B. E. (2005). "Evaluating the operations underlying multisensory integration in the cat superior colliculus", J. Neurosci. Vol 25, 64996508. http://dx.doi.org/10.1523/JNEUROSCI.5095-04.2005
47. Stein B. E. , Meredith M. A. (1993). The Merging of the Senses. MIT Press, Cambridge, MA, USA.
48. Stevenson R. A. , Wallace M. T. (2013). "Multisensory temporal integration: task and stimulus dependencies", Exp. Brain Res. Vol 227, 249261. http://dx.doi.org/10.1007/s00221-013-3507-3
49. Stevenson R. A. , Ghose D. , Fister J. K. , Sarko D. K. , Altieri N. A. , Nidiffer A. R. , Kurela L. R. , Siemann J. K. , James T. W. , Wallace M. T. (2014). "Identifying and quantifying multisensory integration: a tutorial review", Brain Topogr. Vol 27, 707730. http://dx.doi.org/10.1007/s10548-014-0365-7
50. Thelen A. , Matusz P. J. , Murray M. M. (2014). "Multisensory context portends object memory", Curr. Biol. Vol 24, R734R735. http://dx.doi.org/10.1016/j.cub.2014.06.040
51. Voss R. F. (1992). "Evolution of long-range fractal correlations and 1 ∕ f noise in DNA base sequences", Phys. Rev. Lett. Vol 68, 38053808. http://dx.doi.org/10.1103/PhysRevLett.68.3805
52. Wallace M. T. , Roberson G. E. , Hairston W. D. , Stein B. E. , Vaughan J. W. , Schirillo J. A. (2004). "Unifying multisensory signals across time and space", Exp. Brain Res. Vol 158, 252258. http://dx.doi.org/10.1007/s00221-004-1899-9
53. West R. , Murphy K. J. , Armilio M. L. , Craik F. I. , Stuss D. T. (2002). "Lapses of intention and performance variability reveal age-related increases in fluctuations of executive control", Brain Cogn. Vol 49, 402419. http://dx.doi.org/10.1006/brcg.2001.1507
54. Yarkoni T. , Barch D. M. , Gray J. R. , Conturo T. E. , Braver T. S. (2009). "BOLD correlates of trial-by-trial reaction time variability in gray matter and white matter: a multi-study fMRI analysis", PLoS ONE Vol 4, e4257. DOI:. http://dx.doi.org/10.1371/journal.pone.0004257
http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-00002536
Loading

Article metrics loading...

/content/journals/10.1163/22134808-00002536
2016-06-08
2018-06-25

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation