Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Shape Discrimination Using the Tongue: Implications for a Visual-to-Tactile Sensory Substitution Device

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

Sensory substitution devices have the potential to provide individuals with visual impairments with more information about their environments, which may help them recognize objects and achieve more independence in their daily lives. However, many of these devices may require extensive training and might be limited in the amount of information that they can convey. We tested the effectiveness and assessed some of the limitations of the BrainPort device, which provides stimulation through a 20 × 20 electrode grid array on the tongue. Across five experiments, including one with blind individuals, we found that subjects were unable to accurately discriminate between simple shapes as well as different line orientations that were briefly presented on the tongue, even after 300 trials of practice with the device. These experiments indicate that such a minimal training regimen with the BrainPort is not sufficient for object recognition, raising serious concerns about the usability of this device without extensive training.

Affiliations: 1: The City College and Graduate Center of the City University of New York, 365 Fifth Ave., New York, NY 10016, USA

*To whom correspondence should be addressed. E-mail:
Loading data from figshare Loading data from figshare

Full text loading...


Data & Media loading...

1. Abboud S., Hanassy S., Levy-Tzedek S., Maidenbaum S., Amedi A. (2014). "EyeMusic: introducing a ‘visual’ colorful experience for the blind using auditory sensory substitution", Restor. Neurol. Neurosci. Vol 32, 247257.
2. Amedi A., Malach R., Pascual-Leone A. (2005). "Negative BOLD differentiates visual imagery and perception", Neuron Vol 48, 859872. [Crossref]
3. Azulay H., Striem E., Amedi A. (2009). "Negative BOLD in sensory cortices during verbal memory: a component in generating internal representations?" Brain Topogr. Vol 21, 221231. [Crossref]
4. Bach-y-Rita P., Kaczmarek K., Tyler M., Garcia-Laura J. (1998). "Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note", J. Rehab. Res. Dev. Vol 35, 427430.
5. Brown D., Simpson A., Proulx M. (2015). "Auditory scene analysis and sonified visual images. Does consonance negatively impact on object formation when using complex sonified stimuli?" Front. Psychol. Vol 6, 1522. DOI:.
6. Burton H., Snyder A. Z., Conturo T. E., Akbudak E., Ollinger J. M., Raichle M. E. (2002a). "Adaptive changes in early and late blind: a fMRI study of Braille reading", J. Neurophysiol. Vol 87, 589607.
7. Burton H., Snyder A. Z., Diamond J. B., Raichle M. E. (2002b). "Adaptive changes in early and late blind: a FMRI study of verb generation to heard nouns", J. Neurophysiol. Vol 88, 33593371. [Crossref]
8. Chebat D., Rainville C., Kupers R., Ptito M. (2007). "Tactile–‘visual’ acuity of the tongue in early blind individuals", NeuroReport Vol 18, 19011904. [Crossref]
9. Chebat D., Schneider F., Kupers R., Ptito M. (2011). "Navigation with a sensory substitution device in congenitally blind individuals", NeuroReport Vol 22, 342347. [Crossref]
10. Cohen L., Weeks R., Celnik P., Ishii K., Hallett M. (1999). "Period of susceptibility for cross-modal plasticity in the blind", Ann. Neurol. Vol 45, 451460. [Crossref]
11. Collignon O., Dormal G., Albouy G., Vandewalle G., Voss P., Phillips C., Lepore F. (2013). "Impact of blindness onset on the functional organization and the connectivity of the occipital cortex", Brain Vol 136, 27692783. [Crossref]
12. Deibert E., Kraut M., Kremen S., Hart J. (1999). "Neural pathways in tactile object recognition", Neurology Vol 52, 14131417. [Crossref]
13. Essick G., Chen C., Kelly D. (1999). "A letter-recognition task to assess lingual tactile acuity", J. Oral Maxillofac. Surg. Vol 57, 13241330. [Crossref]
14. Gibson J. J. (1962). "Observations on active touch", Psychol. Rev. Vol 69, 477491. [Crossref]
15. Kauffman T., Théoret H., Pascual-Leone A. (2002). "Braille character discrimination in blindfolded human subjects", NeuroReport Vol 13, 571574. [Crossref]
16. Kendrick M. (2009). "Tasting the light", Sci. Am. Vol 301(4), 2224. [Crossref]
17. Khoo W., Olmschenk G., Zhu Z., Ro T. (2015). Evaluating crowd sourced navigation for the visually impaired in a virtual environment, in: IEEE 4th International Conference on Mobile Services (MS 2015), June 27–July 2, 2015, New York, NY, USA, pp. 431–437.
18. Khoo W. L., Seidel E. L., Zhu Z. (2012). Designing a virtual environment to evaluate multimodal sensing for assisting the visually impaired, in: 13th International Conference on Computers Helping People with Special Needs (ICCHP), July 11–13, 2012, Linz, Austria, pp. 573–580.
19. Khoo W. L., Knapp J., Palmer F., Ro T., Zhu Z. (2013). "Designing and testing wearable range-vibrotactile devices", J. Assist. Technol. Vol 7, 102117. [Crossref]
20. Klatzky R., Lederman S., Reed C. (1987). "There’s more to touch than meets the eye: the salience of object attributes for haptics with and without vision", J. Exp. Psychol. Gen. Vol 116, 356369. [Crossref]
21. Kupers R., Chebat D. R., Madsen K. H., Paulson O. B., Ptito M. (2010). "Neural correlates of virtual route recognition in congenital blindness", Proc. Natl Acad. Sci. Vol 107, 1271612721. [Crossref]
22. Lamb G. D. (1983). "Tactile discrimination of textured surfaces: psychophysical performance measurements in humans", J. Physiol. Vol 338, 551565. [Crossref]
23. Lederman S. J., Klatzky R. L. (2009). "Haptic perception: a tutorial", Atten. Percept. Psychophys. Vol 71, 14391459. [Crossref]
24. Lee V. K., Nau A. C., Laymon C., Chan K. C., Rosario B. L., Fisher C. (2014). "Successful tactile based visual sensory substitution use functions independently of visual pathway integrity", Front. Hum. Neurosci. Vol 8, 291. DOI:.
25. Lozano C., Kaczmarek K., Santello M. (2009). "Electrotactile stimulation on the tongue: intensity perception, discrimination, and cross-modality estimation", Somatosens. Mot. Res. Vol 26, 5063. [Crossref]
26. Maidenbaum S., Abboud S., Amedi A. (2014). "Sensory substitution: closing the gap between basic research and widespread practical visual rehabilitation", Neurosci. Biobehav. Rev. Vol 41, 315. [Crossref]
27. Maidenbaum S., Buchs G., Abboud S., Lavi-Rotbain O., Amedi A. (2016). "Perception of graphical virtual environments by blind users via sensory substitution", PLoS One Vol 11, e0147501. DOI:. [Crossref]
28. Matteau I., Kupers R., Ricciardi E., Pietrini P., Ptito M. (2010). "Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals", Brain Res. Bull. Vol 82, 264270. [Crossref]
29. Meijer P. (1992). "An experimental system for auditory image representations", IEEE Trans. Biomed. Eng. Vol 39, 112121. [Crossref]
30. Myles K., Binseel M. S. (2007). The Tactile Modality: A review of tactile sensitivity and human tactile interfaces. U.S. Army Research Laboratory, ARL-TR-4115, Aberdeen Proving Ground, MD 21005-5425.
31. Nau A., Bach M., Fisher C. (2013). "Clinical tests of ultra-low vision used to evaluate rudimentary visual perceptions enabled by the BrainPort vision device", Transl. Vis. Sci. Technol. Vol 2, 1. [Crossref]
32. Nau A. C., Pintar C., Arnoldussen A., Fisher C. (2015). "Acquisition of visual perception in blind adults using the BrainPort artificial vision device", Am. J. Occup. Ther. Vol 69, 6901290010p1-8. DOI:.
33. Poirier C., De Volder A., Tranduy D., Scheiber C. (2006). "Pattern recognition using a device substituting audition for vision in blindfolded sighted subjects", Neuropsychologia Vol 45, 11081121. [Crossref]
34. Ptito M., Moesgaard S., Gjedde A., Kupers R. (2005). "Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind", Brain Vol 128, 606614. [Crossref]
35. Ptito M., Matteau I., Gjedde A., Kupers R. (2009). "Recruitment of the middle temporal area by tactile motion in congenital blindness", NeuroReport Vol 20, 543547. [Crossref]
36. Ptito M., Matteau I., Zhi Wang A., Paulson O. B., Siebner H. R., Kupers R. (2012). "Crossmodal recruitment of the ventral visual stream in congenital blindness", Neural Plast. Vol 2012, 304045. DOI:.
37. Sabbah N., Authié C., Sanda N., Mohand-Saïd S., Sahel J.-A., Safran A., Habas C., Amedi A. (2016). "Increased functional connectivity between language and visually deprived areas in late and partial blindness", NeuroImage Vol 136, 162173. [Crossref]
38. Sadato N., Pascual-Leone A., Grafmani J., Ibañez V., Deiber M., Dold G., Hallett M. (1996). "Activation of the primary visual cortex by Braille reading in blind subjects", Nature Vol 380(6574), 526528. [Crossref]
39. Sadato N., Okada T., Honda M., Yonekura Y. (2002). "Critical period for cross-modal plasticity in blind humans: a functional MRI study", NeuroImage Vol 16, 389400. [Crossref]
40. Sampaio E., Maris S., Bach-y-Rita P. (2001). "Brain plasticity: ‘visual’ acuity of blind persons via the tongue", Brain Res. Vol 908, 204207. [Crossref]
41. Sathian K., Zangaladze A., Hoffman J., Grafton S. (1997). "Feeling with the mind’s eye", NeuroReport Vol 8, 38773881. [Crossref]
42. Spanos N. P., Stam H. J. (1979). "The elicitation of visual hallucinations via brief instructions in a normal sample", J. Nerv. Ment. Dis. Vol 167, 488494. [Crossref]
43. Spence C. (2014). "The skin as a medium for sensory substitution", Multisens. Res. Vol 27, 293312. [Crossref]
44. Steele C. M., Hill L., Stokely S., Peladeau-Pigeon M. (2014). "Age and strength influences on lingual tactile acuity", J. Text. Stud. Vol 45, 317323. [Crossref]
45. Steeves J., Harris L. (2012). Plasticity in Sensory Systems. Cambridge University Press, Cambridge, UK. [Crossref]
46. Stiles N. R., Shimojo S. (2015). "Auditory sensory substitution is intuitive and automatic with texture stimuli", Sci. Rep. Vol 5, 15628. DOI:. [Crossref]
47. Trulsson M., Essick G. K. (1997). "Low-threshold mechanoreceptive afferents in the human lingual nerve", J. Neurophysiol. Vol 77, 737748.
48. Van Boven R. W., Johnson K. O. (1994). "The limit of tactile spatial resolution in humans: grating orientation discrimination at the lip, tongue, and finger", Neurology Vol 44, 23612366. [Crossref]
49. Vega-Bermudez F., Johnson K. O., Hsiao S. S. (1991). "Human tactile pattern recognition: active versus passive touch, velocity effects, and patterns of confusion", J. Neurophysiol. Vol 65, 531546.
50. Voss P., Gougoux F., Lassonde M., Zatorre R. J., Lepore F. (2006). "A positron emission tomography study during auditory localization by late-onset blind individuals", NeuroReport Vol 17, 383388. [Crossref]
51. Wan C., Wood A., Reutens D., Wilson S. (2010a). "Congenital blindness leads to enhanced vibrotactile perception", Neuropsychologia Vol 48, 631635. [Crossref]
52. Wan C., Wood A., Reutens D., Wilson S. (2010b). "Early but not late-blindness leads to enhanced auditory perception", Neuropsychologia Vol 48, 344348. [Crossref]
53. Ward J., Meijer P. (2010). "Visual experiences in the blind induced by an auditory sensory substitution device", Consc. Cogn. Vol 19, 492500. [Crossref]
54. Wicab Inc. (2008). BrainPort® technology tongue interface characterization Tactical Underwater Navigation System (TUNS): interim report for November 2006 to June 2008. Wright-Patterson AFB, OH: Air Force Research Laboratory, Human Effectiveness Directorate, Biosciences and Protection Division, Aircrew Performance and Protection Branch.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation