Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Open Access Vection Latency Is Reduced by Bone-Conducted Vibration and Noisy Galvanic Vestibular Stimulation

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Vection Latency Is Reduced by Bone-Conducted Vibration and Noisy Galvanic Vestibular Stimulation

  • PDF
  • HTML
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

Studies of the illusory sense of self-motion elicited by a moving visual surround (‘vection’) have revealed key insights about how sensory information is integrated. Vection usually occurs after a delay of several seconds following visual motion onset, whereas self-motion in the natural environment is perceived immediately. It has been suggested that this latency relates to the sensory mismatch between visual and vestibular signals at motion onset. Here, we tested three techniques with the potential to reduce sensory mismatch in order to shorten vection onset latency: noisy galvanic vestibular stimulation (GVS) and bone conducted vibration (BCV) at the mastoid processes, and body vibration applied to the lower back. In Experiment 1, we examined vection latency for wide field visual rotations about the roll axis and applied a burst of stimulation at the start of visual motion. Both GVS and BCV reduced vection latency by two seconds compared to the control condition, whereas body vibration had no effect on latency. In Experiment 2, the visual stimulus rotated about the pitch, roll, or yaw axis and we found a similar facilitation of vection by both BCV and GVS in each case. In a control experiment, we confirmed that air-conducted sound administered through headphones was not sufficient to reduce vection onset latency. Together the results suggest that noisy vestibular stimulation facilitates vection, likely due to an upweighting of visual information caused by a reduction in vestibular sensory reliability.

Affiliations: 1: 1Department of Psychology, Queen’s University, Kingston, ON, Canada ; 2: 2Department of Biology, Queen’s University, Kingston, ON, Canada ; 3: 3School of Computing, Queen’s University, Kingston, ON, Canada

*To whom correspondence should be addressed: 62 Arch Street, Humphrey Hall 232, Queen’s University, Kingston, Ontario, Canada, K7L 3N6. E-mail: seamas.weech@queensu.ca

Studies of the illusory sense of self-motion elicited by a moving visual surround (‘vection’) have revealed key insights about how sensory information is integrated. Vection usually occurs after a delay of several seconds following visual motion onset, whereas self-motion in the natural environment is perceived immediately. It has been suggested that this latency relates to the sensory mismatch between visual and vestibular signals at motion onset. Here, we tested three techniques with the potential to reduce sensory mismatch in order to shorten vection onset latency: noisy galvanic vestibular stimulation (GVS) and bone conducted vibration (BCV) at the mastoid processes, and body vibration applied to the lower back. In Experiment 1, we examined vection latency for wide field visual rotations about the roll axis and applied a burst of stimulation at the start of visual motion. Both GVS and BCV reduced vection latency by two seconds compared to the control condition, whereas body vibration had no effect on latency. In Experiment 2, the visual stimulus rotated about the pitch, roll, or yaw axis and we found a similar facilitation of vection by both BCV and GVS in each case. In a control experiment, we confirmed that air-conducted sound administered through headphones was not sufficient to reduce vection onset latency. Together the results suggest that noisy vestibular stimulation facilitates vection, likely due to an upweighting of visual information caused by a reduction in vestibular sensory reliability.

Loading

Full text loading...

/deliver/journals/22134808/30/1/22134808_030_01_s003_text.html?itemId=/content/journals/10.1163/22134808-00002545&mimeType=html&fmt=ahah
/content/journals/10.1163/22134808-00002545
Loading

Data & Media loading...

1. Angelaki D. E., Gu Y., DeAngelis G. C. (2011). "Visual and vestibular cue integration for heading perception in extrastriate visual cortex", J. Physiol. Vol 589, 825833. [Crossref]
2. Ash A., Palmisano S. (2012). "Vection during conflicting multisensory information about the axis, magnitude, and direction of self-motion", Perception Vol 41, 253267. [Crossref]
3. Benson A. J., Spencer M. B., Stott J. R. R. (1986). "Thresholds for the detection of the direction of whole-body, linear movement in the horizontal plane", Aviat. Space Environ. Med. Vol 57, 10881096.
4. Bickford R. G., Jacobson J. L., Cody D. T. R. (1964). "Nature of average evoked potentials to sound and other stimuli in man", Ann. N. Y. Acad. Sci. Vol 112, 204218. [Crossref]
5. Bitzer S., Park H., Blankenburg F., Kiebel S. J. (2014). "Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model", Front. Hum. Neurosci. Vol 8, 102. DOI:. [Crossref]
6. Blanks R. H., Curthoys I. S., Markham C. H. (1975). "Planar relationships of the semicircular canals in man", Acta Otolaryngol. Vol 80, 185196. [Crossref]
7. Brainard D. H. (1997). "The psychophysics toolbox", Spat. Vis. Vol 10, 433436. [Crossref]
8. Brandt T., Dichgans J., Büchele W. (1974). "Motion habituation: inverted self-motion perception and optokinetic after-nystagmus", Exp. Brain Res. Vol 21, 337352. [Crossref]
9. Brandt T., Büchele W., Arnold F. (1977). "Arthrokinetic nystagmus and ego-motion sensation", Exp. Brain Res. Vol 30, 331338.
10. Brindza J., Szweda J., Liao Q., Jiang Y., Striegel A. (2009). WiiLab: bringing together the Nintendo Wiimote and MATLAB, in: 39th ASEE/IEEE Frontiers in Education Conference, San Antonio, TX, USA.
11. Cheung B. S., Howard I. P., Money K. E. (1991). "Visually induced sickness in normal and bilaterally labyrinthine-defective subjects", Aviat. Space Environ. Med. Vol 62, 527531.
12. Cohen B., Yakushin S. B., Holstein G. R. (2012). "What does galvanic vestibular stimulation actually activate?" Front. Neurol. Vol 2, 90. DOI:. [Crossref]
13. Colebatch J. G., Halmagyi G. M., Skuse N. F. (1994). "Myogenic potentials generated by a click-evoked vestibulocollic reflex", J. Neurol. Neurosurg. Psychiat. Vol 57, 190197. [Crossref]
14. Cornell E. D., Burgess A. M., MacDougall H. G., Curthoys I. S. (2009). "Vertical and horizontal eye movement responses to unilateral and bilateral bone conducted vibration to the mastoid", J. Vestib. Res. Vol 19, 4147.
15. Cornell E. D., Burgess A. M., MacDougall H. G., Curthoys I. S. (2015). "Bone conducted vibration to the mastoid produces horizontal, vertical and torsional eye movements", J. Vestib. Res. Vol 25(2), 9196.
16. Cousineau D. (2005). "Confidence intervals in within-subject designs: a simpler solution to Loftus and Masson’s method", Tutor. Quant. Methods Psychol. Vol 1, 4245. [Crossref]
17. Cress J. D., Hettinger L. J., Cunningham J. A., Riccio G. E., Haas M. W., McMillan G. R. (1997). "Integrating vestibular displays for VE and airborne applications", IEEE Comput. Graph. Appl. Vol 17, 4652. [Crossref]
18. Curthoys I. S., MacDougall H. G. (2012). "What galvanic vestibular stimulation actually activates", Front. Neurol. Vol 3, 117. DOI:. [Crossref]
19. Curthoys I. S., Manzari L., Smulders Y. E., Burgess A. M. (2009). "A review of the scientific basis and practical application of a new test of utricular function–ocular vestibular–evoked myogenic potentials to bone-conducted vibration", Acta Otorhinolaryngol. Ital. Vol 29, 179186.
20. Curthoys I. S., Vulovic V., Burgess A. M., Manzari L., Sokolic L., Pogson J., Robins M., Mezey L. E., Goonetilleke S., Cornell E. D., MacDougall H. G. (2014). "Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration", Clin. Exp. Pharmacol. Physiol. Vol 41, 371380. [Crossref]
21. Dakin C. J., Son G. M. L., Inglis J. T., Blouin J. S. (2007). "Frequency response of human vestibular reflexes characterized by stochastic stimuli", J. Physiol. Vol 583, 11171127. [Crossref]
22. Day B. L., Fitzpatrick R. C. (2005). "The vestibular system", Curr. Biol. Vol 15, R583R586. [Crossref]
23. Deering M. (1992). "High resolution virtual reality", ACM SIGGRAPH Comput. Graph. Vol 26, 195202. [Crossref]
24. Dichgans J., Brandt T. (1978). "Visual–vestibular interaction: effects on self-motion perception and postural control", in: Perception, Held R., Leibowitz G. W., Teuber H.-I. (Eds), Handbook of Sensory Physiology, Vol Vol. 8, pp.  755804. Springer-Verlag, Berlin, Heidelberg, Germany, and New York, NY, USA. [Crossref]
25. Draisey S., Mullins M. (2004). Human audio/vestibular system: data input channels for robotic force and moment sensor measurements, in: Proceedings of the Canadian Engineering Education Association, McGill University, Montréal, QC, Canada.
26. Ernst M. O., Banks M. S. (2002). "Humans integrate visual and haptic information in a statistically optimal fashion", Nature Vol 415, 429433. [Crossref]
27. Fasold O., Von Brevern M., Kuhberg M., Ploner C. J., Villringer A., Lempert T., Wenzel R. (2002). "Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging", Neuroimage Vol 17, 13841393. [Crossref]
28. Fitzpatrick R. C., Day B. L. (2004). "Probing the human vestibular system with galvanic stimulation", J. Appl. Physiol. Vol 96, 23012316. [Crossref]
29. Fitzpatrick R. C., Wardman D. L., Taylor J. L. (1999). "Effects of galvanic vestibular stimulation during human walking", J. Physiol. Vol 517, 931939. [Crossref]
30. Flanagan M., May J., Dobie T. (2004). "The role of vection, eye movements and postural instability in the etiology of motion sickness", J. Vestib. Res. Vol 14, 335346.
31. Friston S., Steed A., Tilbury S., Gaydadjiev G. (2016). "Construction and evaluation of an ultra low latency frameless renderer for VR", IEEE Trans. Vis. Comput. Graph. Vol 22, 13771386. [Crossref]
32. Fushiki H., Takata S., Nagaki Y., Watanabe Y. (1999). "Circular vection in patients with age-related macular degeneration", J. Vestib. Res. Vol 9, 287291.
33. Gibson J. J. (1950). The Perception of the Visual World. Houghton Mifflin, Oxford, England.
34. Gibson J. J. (1966). The Senses Considered as Perceptual Systems. Houghton Mifflin, Oxford, England.
35. Goldberg J. M., Smith C. E., Fernandez C. (1984). "Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey", J. Neurophysiol. Vol 51, 12361256.
36. Greenlee M. W., Frank S. M., Kaliuzhna M., Blanke O., Bremmer F., Churan J., Cuturi L. F., MacNeilage P. R., Smith A. T. (2016). "Multisensory integration in self motion perception", Multisens. Res. Vol 29, 525556. [Crossref]
37. Greer T., Spjut J., Luebke D., Whitted T. (2016). "Hybrid modulation for near zero display latency", SID Dig. Tech. Pap. Vol 47, 7678. [Crossref]
38. Hardiess G., Mallot H. A., Meilinger T. (2015). "Virtual reality and spatial cognition", in: International Encyclopedia of the Social and Behavioral Sciences, 2nd edn., Wright J. D. (Ed.), pp.  133137. Elsevier, Oxford, UK. [Crossref]
39. Hoffman D. M., Girshick A. R., Akeley K., Banks M. (2008). "Vergence accommodation conflicts hinder visual performance and cause visual fatigue", J. Vis. Vol 8, 33.
40. Israël I., Warren W. H. (2005). "Vestibular, proprioceptive, and visual influences on the perception of orientation and self-motion in humans", in: Head Direction Cells and the Neural Mechanisms of Spatial Orientation, Wiener S. I., Taube J. S. (Eds), pp.  347381. MIT Press, Cambridge, MA, USA.
41. Jain A., Backus B. T. (2010). "Experience affects the use of ego-motion signals during 3D shape perception", J. Vis. Vol 10, 30.
42. Johansson G. (1977). "Studies on visual perception of locomotion", Perception Vol 6, 365376. [Crossref]
43. Kennedy R. S., Lane N. E., Berbaum K. S., Lilienthal M. G. (1993). "Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness", Int. J. Aviat. Psychol. Vol 3, 203220. [Crossref]
44. Kim J., Curthoys I. S. (2004). "Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig", Brain Res. Bull. Vol 64, 265271. [Crossref]
45. Kim J., Palmisano S. (2010a). "Eccentric gaze dynamics enhance vection in depth", J. Vis. Vol 10, 7. DOI:.
46. Kim J., Palmisano S. (2010b). "Visually mediated eye movements regulate the capture of optic flow in self-motion perception", Exp. Brain Res. Vol 202, 355361. [Crossref]
47. Lackner J. R. (1977). "Induction of illusory self-rotation and nystagmus by a rotating sound-field", Aviat. Space Environ. Med. Vol 482, 129131.
48. Lackner J. R., Teixeira R. A. (1977). "Optokinetic motion sickness: continuous head movements attenuate the visual induction of apparent self-rotation and symptoms of motion sickness", Aviat. Space Environ. Med. Vol 482, 248253.
49. Landy M. S., Maloney L. T., Johnston E. B., Young M. (1995). "Measurement and modeling of depth cue combination: in defense of weak fusion", Vis. Res. Vol 35, 389412. [Crossref]
50. Lee D. N., Aronson E. (1974). "Visual proprioceptive control of standing in human infants", Percept. Psychophys. Vol 15, 529532. [Crossref]
51. Lee D. N., Lishman J. R. (1975). "Visual proprioceptive control of stance", J. Hum. Movement Stud. Vol 1, 8795.
52. Lenggenhager B., Lopez C., Blanke O. (2008). "Influence of galvanic vestibular stimulation on egocentric and object-based mental transformations", Exp. Brain Res. Vol 184, 211221. [Crossref]
53. Lepecq J. C., Giannopulu I., Mertz S., Baudonniere P. M. (1999). "Vestibular sensitivity and vection chronometry along the spinal axis in erect man", Perception Vol 28, 6372. [Crossref]
54. Lepecq J. C., De Waele C., Mertz-Josse S., Teyssedre C., Huy P. T. B., Baudonniere P. M., Vidal P. P. (2006). "Galvanic vestibular stimulation modifies vection paths in healthy subjects", J. Neurophysiol. Vol 95, 31993207. [Crossref]
55. Linkenauger S. A., Bülthoff H. H., Mohler B. J. (2015). "Virtual arm’s reach influences perceived distances but only after experience reaching", Neuropsychologia Vol 70, 393401. [Crossref]
56. Lishman J. R., Lee D. N. (1973). "The autonomy of visual kinaesthesis", Perception Vol 2, 287294. [Crossref]
57. Loomis J. M., Knapp J. M. (2003). "Visual perception of egocentric distance in real and virtual environments", in: Virtual and Adaptive Environments, Hettinger L. J., Haas M. W. (Eds), pp.  2146. Erlbaum, NJ, USA. [Crossref]
58. Manzari L., Tedesco A., Burgess A. M., Curthoys I. S. (2010). "Ocular vestibular-evoked myogenic potentials to bone-conducted vibration in superior vestibular neuritis show utricular function", Otolaryngol. Head Neck Surg. Vol 143, 274280. [Crossref]
59. McCauley M. E., Sharkey T. J. (1992). "Cybersickness: perception of self-motion in virtual environments", Presence (Camb.) Vol 1, 311318. [Crossref]
60. McDonnell M. D., Abbott D. (2009). "What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology", PLoS Comput. Biol. Vol 5, e1000348. DOI:. [Crossref]
61. Moss F., Ward L. M., Sannita W. G. (2004). "Stochastic resonance and sensory information processing: a tutorial and review of application", Clin. Neurophysiol. Vol 115, 267281. [Crossref]
62. Nashner L. M., Wolfson P. (1974). "Influence of head position and proprioceptive cues on short latency postural reflexes evoked by galvanic stimulation of the human labyrinth", Brain Res. Vol 67, 255268. [Crossref]
63. Pal S., Rosengren S. M., Colebatch J. G. (2009). "Stochastic galvanic vestibular stimulation produces a small reduction in sway in Parkinson’s disease", J. Vestib. Res. Vol 19, 137142.
64. Palmisano S., Chan A. Y. (2004). "Jitter and size effects on vection are immune to experimental instructions and demands", Perception Vol 33, 9871000. [Crossref]
65. Palmisano S., Keane S. K. (2004). Effects of visual jitter on visual–vestibular interaction during vection, in: Proceedings of the 39th Annual Australian Psychological Society Conference, Sydney, Australia, pp. 221–224.
66. Palmisano S., Kim J. (2009). "Effects of gaze on vection from jittering, oscillating, and purely radial optic flow", Atten. Percept. Psychophys. Vol 71, 18421853. [Crossref]
67. Palmisano S., Gillam B. J., Blackburn S. G. (2000). "Global-perspective jitter improves vection in central vision", Perception Vol 29, 5767. [Crossref]
68. Palmisano S., Allison R. S., Kim J., Bonato F. (2011). "Simulated viewpoint jitter shakes sensory conflict accounts of self-motion perception", Seeing Perceiving Vol 24, 173200. [Crossref]
69. Palmisano S., Kim J., Freeman T. C. (2012). "Horizontal fixation point oscillation and simulated viewpoint oscillation both increase vection in depth", J. Vis. Vol 12, 15.
70. Palmisano S., Allison R. S., Schira M. M., Barry R. J. (2015). "Future challenges for vection research: definitions, functional significance, measures and neural bases", Front. Psychol. Vol 6, 115. DOI:. [Crossref]
71. Pavlik A. E., Inglis J. T., Lauk M., Oddsson L., Collins J. J. (1999). "The effects of stochastic galvanic vestibular stimulation on human postural sway", Exp. Brain Res. Vol 124, 273280. [Crossref]
72. Reed-Jones R. J., Reed-Jones J. G., Trick L. M., Vallis L. A. (2007). Can galvanic vestibular stimulation reduce simulator adaptation syndrome?, in: Proceedings of the 4th International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, Stevenson, WA, USA, pp. 534–540.
73. Reynolds R. F., Osler C. J. (2012). "Galvanic vestibular stimulation produces sensations of rotation consistent with activation of semicircular canal afferents", Front. Neurol. Vol 3, 104. DOI:. [Crossref]
74. Riecke B. E. (2011). "Compelling self-motion through virtual environments without actual self-motion: using self-motion illusions (“vection”) to improve user experience in VR", in: Virtual Reality, Kim J.-J. (Ed.), pp.  149176. InTech, Rijeka, Croatia.
75. Riecke B. E., Schulte-Pelkum J., Caniard F. (2006). Visually induced linear vection is enhanced by small physical accelerations, in: 7th International Multisensory Research Forum, Dublin, Ireland.
76. Riecke B. E., Feuereissen D., Rieser J. J. (2008). Auditory self-motion illusions (circular vection) can be facilitated by vibrations and the potential for actual motion, in: Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, Los Angeles, CA, USA, pp. 147–154.
77. Rosengren S. M., Todd N. P. M., Colebatch J. G. (2005). "Vestibular-evoked extraocular potentials produced by stimulation with bone-conducted sound", Clin. Neurophysiol. Vol 116, 19381948. [Crossref]
78. Scarfe P., Glennerster A. (2015). "Using high-fidelity virtual reality to study perception in freely moving observers", J. Vis. Vol 15, 111.
79. Schulte-Pelkum J. (2007). Perception of self-motion: vection experiments in multi-sensory virtual environments, PhD Thesis, Ruhr-Universität Bochum, Germany.
80. Sharples S., Cobb S., Moody A., Wilson J. R. (2008). "Virtual reality induced symptoms and effects (VRISE): comparison of head mounted display (HMD), desktop and projection display systems", Displays Vol 29, 5869. [Crossref]
81. Sheykholeslami K., Murofoshi T., Habiby Kermany M., Kaga K. (2000). "Bone-conducted evoked myogenic potentials from the sternocleidomastoid muscle", Acta Otolaryngol. Vol 120, 731734. [Crossref]
82. Sheykholeslami K., Kermany M. H., Kaga K. (2001). "Frequency sensitivity range of the saccule to bone-conducted stimuli measured by vestibular evoked myogenic potentials", Hearing Res. Vol 160, 5862. [Crossref]
83. Shupak A., Gordon C. R. (2006). "Motion sickness: advances in pathogenesis, prediction, prevention, and treatment", Aviat. Space Environ. Med. Vol 77, 12131223.
84. Slater M. (2009). "Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments", Philos. Trans. R. Soc. Lond. B Biol. Sci. Vol 364, 35493557. [Crossref]
85. St George R. J., Fitzpatrick R. C. (2011). "The sense of self-motion, orientation and balance explored by vestibular stimulation", J. Physiol. Vol 589, 807813. [Crossref]
86. Stone M. (1960). "Models for choice reaction time", Psychometrika Vol 25, 251260. [Crossref]
87. Swaak A. J. G., Oosterveld W. J. (1975). "Galvanic vestibular stimulation", Stereotact. Funct. Neurosurg. Vol 38, 136143. [Crossref]
88. Tanahashi S., Ujike H., Ukai K. (2012). "Visual rotation axis and body position relative to the gravitational direction: effects on circular vection", i-Perception Vol 3, 804819. [Crossref]
89. Todd N. P. M., Cody F. W. J., Banks J. R. (2000). "A saccular origin of frequency tuning in myogenic vestibular evoked potentials? Implication for human response to loud sounds", Hearing Res. Vol 141, 180188. [Crossref]
90. Townsend G. L., Cody D. T. R. (1971). "The averaged inion response evoked by acoustic stimulation: its relation to the saccule", Ann. Otol. Rhinol. Laryngol. Vol 80, 121131. [Crossref]
91. Uchino Y., Kushiro K. (2011). "Differences between otolith-and semicircular canal-activated neural circuitry in the vestibular system", Neurosci. Res. Vol 71, 315327. [Crossref]
92. Uchino Y., Sato H., Kushiro K., Zakir M. M., Isu N. (2000). "Canal and otolith inputs to single vestibular neurons in cats", Arch. Ital. Biol. Vol 138, 313.
93. Ujike H., Yokoi T., Saida S. (2004). Effects of virtual body motion on visually-induced motion sickness, in: Engineering in Medicine and Biology Society, 26th Annual International Conference of the IEEE, San Francisco, CA, USA, pp. 2399–2402.
94. Väljamäe A. (2009). "Auditorily-induced illusory self-motion: a review", Brain Res. Rev. Vol 61, 240255. [Crossref]
95. Väljamäe A., Larsson P., Västfjäll D., Kleiner M. (2004). Auditory presence, individualized head-related transfer functions, and illusory ego-motion in virtual environments, in: Proceedings of 7th International Conference on Presence, Limerick, Ireland, pp. 141–147.
96. Vignais N., Kulpa R., Brault S., Presse D., Bideau B. (2015). "Which technology to investigate visual perception in sport: video vs. virtual reality", Hum. Mov. Sci. Vol 39, 1226. [Crossref]
97. Wann J. P., Rushton S., Mon-Williams M. (1995). "Natural problems for stereoscopic depth perception in virtual environments", Vision Res. Vol 35, 27312736. [Crossref]
98. Wardman D. L., Fitzpatrick R. C. (2002). "What does galvanic vestibular stimulation stimulate?", in: Sensorimotor Control of Movement and Posture, Gandevia S. C., Proske U., Stuart D. G. (Eds), pp.  119128. Springer-Verlag, Berlin, Heidelberg, Germany, and New York, NY, USA. [Crossref]
99. Warren R. (1976). "The perception of egomotion", J. Exp. Psychol. Hum. Percept. Perf. Vol 2, 448456. [Crossref]
100. Willemsen P., Gooch A. A. (2002). Perceived egocentric distances in real, image-based, and traditional virtual environments, in: Proceedings of the IEEE Virtual Reality 2002 (VR02), Washington, DC, USA, pp. 275–276.
101. Wilson C. J., Soranzo A. (2015). "The use of virtual reality in psychology: a case study in visual perception", Comput. Math. Methods Med. Vol 2015, 151702. [Crossref]
102. Wong S. C. P., Frost B. J. (1978). "Subjective motion and acceleration induced by the movement of the observer’s entire visual field", Percept. Psychophys. Vol 24, 115120. [Crossref]
103. Wong S. C. P., Frost B. J. (1981). "The effect of visual–vestibular conflict on the latency of steady-state visually induced subjective rotation", Percept. Psychophys. Vol 30, 228236. [Crossref]
104. Young L. R., Dichgans J., Murphy R., Brandt T. (1973). "Interaction of optokinetic and vestibular stimuli in motion perception", Acta Otolaryngol. Vol 76, 2431. [Crossref]
105. Zhang X., Sasaki M., Sato H., Meng H., Bai R., Imagawa M., Uchino Y. (2002). "Convergence of the anterior semicircular canal and otolith afferents on cat single vestibular neurons", Exp. Brain Res. Vol 147, 407417. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-00002545
Loading
Loading

Article metrics loading...

/content/journals/10.1163/22134808-00002545
2017-01-26
2017-11-22

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation