Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Steady-State EEG and Psychophysical Measures of Multisensory Integration to Cross-Modally Synchronous and Asynchronous Acoustic and Vibrotactile Amplitude Modulation Rate

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

According to the temporal principle of multisensory integration, cross-modal synchronisation of stimulus onset facilitates multisensory integration. This is typically observed as a greater response to multisensory stimulation relative to the sum of the constituent unisensory responses (i.e., superadditivity). The aim of the present study was to examine whether the temporal principle extends to the cross-modal synchrony of amplitude-modulation (AM) rate. It is well established that psychophysical sensitivity to AM stimulation is strongly influenced by AM rate where the optimum rate differs according to sensory modality. This rate-dependent sensitivity is also apparent from EEG steady-state response (SSR) activity, which becomes entrained to the stimulation rate and is thought to reflect neural processing of the temporal characteristics of AM stimulation. In this study we investigated whether cross-modal congruence of AM rate reveals both psychophysical and EEG evidence of enhanced multisensory integration. To achieve this, EEG SSR and psychophysical sensitivity to simultaneous acoustic and/or vibrotactile AM stimuli were measured at cross-modally congruent and incongruent AM rates. While the results provided no evidence of superadditive multisensory SSR activity or psychophysical sensitivity, the complex pattern of results did reveal a consistent correspondence between SSR activity and psychophysical sensitivity to AM stimulation. This indicates that entrained EEG activity may provide a direct measure of cortical activity underlying multisensory integration. Consistent with the temporal principle of multisensory integration, increased vibrotactile SSR responses and psychophysical sensitivity were found for cross-modally congruent relative to incongruent AM rate. However, no corresponding increase in auditory SSR or psychophysical sensitivity was observed for cross-modally congruent AM rates. This complex pattern of results can be understood in terms of the likely influence of the principle of inverse effectiveness where the temporal principle of multisensory integration was only evident in the context of reduced perceptual sensitivity for the vibrotactile but not the auditory modality.

Affiliations: 1: Brain Imaging Lab, School of Psychology, University of Newcastle, Ourimbah, NSW, Australia

*To whom correspondence should be addressed. E-mail: justin.timora@uon.edu.au
Loading

Full text loading...

/content/journals/10.1163/22134808-00002549
Loading

Data & Media loading...

1. Bendor D., Wang X. (2007). "Differential neural coding of acoustic flutter within primate auditory cortex", Nat. Neurosci. Vol 10, 763771. [Crossref]
2. Brett-Green B. A., Miller L. J., Gavin W. J., Davies P. L. (2008). "Multisensory integration in children: a preliminary ERP study", Brain Res. Vol 1242, 283290. [Crossref]
3. Calvert G. A. (2001). "Crossmodal processing in the human brain: insights from functional neuroimaging studies", Cereb. Cortex Vol 11, 11101123. [Crossref]
4. Calvert G. A., Campbell R., Brammer M. J. (2000). "Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex", Curr. Biol. Vol 10, 649657. [Crossref]
5. Colon E., Legrain V., Mouraux A. (2012). "Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain", Clin. Neurophysiol. Vol 42, 315323. [Crossref]
6. De Jong R., Toffanin P., Harbers M. (2010). "Dynamic crossmodal links revealed by steady-state responses in auditory-visual divided attention", Int. J. Psychophysiol. Vol 75, 315. [Crossref]
7. Denison R. N., Driver J., Ruff C. C. (2013). "Temporal structure and complexity affect audio-visual correspondence detection", Front. Psychol. Vol 3, 619. DOI:10.3389/fpsyg.2012.00619. [Crossref]
8. Diederich A., Colonius H. (2004). "Bimodal and trimodal multisensory enhancement: effects of stimulus onset and intensity on reaction time", Percept. Psychophys. Vol 66, 13881404. [Crossref]
9. Findlay J. M. (1978). "Esimates on probablilty functions: a more virulent PEST", Percept. Psychophys. Vol 23, 181185. [Crossref]
10. Foxe J. J., Morocz I. A., Murray M. M., Higgins B. A., Javitt D. C., Schroeder C. E. (2000). "Multisensory auditory-somatosensory interactions in early cortical processing revealed by high-density electrical mapping", Brain Res. Cogn. Brain Res. Vol 10, 7783. [Crossref]
11. Foxe J. J., Wylie G. R., Martinez A., Schroeder C. E., Javitt D. C., Guilfoyle D., Ritter W., Murray M. M. (2002). "Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study", J. Neurophysiol. Vol 88, 540543. [Crossref]
12. Galambos R., Makeig S., Talmachoff P. J. (1981). "A 40-Hz auditory potential recorded from the human scalp", Proc. Natl Acad. Sci. Vol 78, 26432647. [Crossref]
13. Gescheider G. A., Niblette R. K. (1967). "Cross-modality masking for touch and hearing", J. Exp. Psychol. Vol 74, 313320. [Crossref]
14. Giabbiconi C. M., Dancer C., Zopf R., Gruber T., Muller M. M. (2004). "Selective spatial attention to left or right hand flutter sensation modulates the steady-state somatosensory evoked potential", Brain Res. Cogn. Brain Res. Vol 20, 5866. [Crossref]
15. Giani A. S., Ortiz E., Belardinelli P., Kleiner M., Preissl H., Noppeney U. (2012). "Steady-state responses in MEG demonstrate information integration within but not across the auditory and visual senses", Neuroimage Vol 60, 14781489. [Crossref]
16. Gillmeister H., Eimer M. (2007). "Tactile enhancement of auditory detection and perceived loudness", Brain Res. Vol 1160, 5868. [Crossref]
17. Holmes N. P., Spence C. (2005). "Multisensory integration: space, time and superadditivity", Curr. Biol. Vol 15, R762R764. [Crossref]
18. Joris P. X., Schreiner C. E., Rees A. (2004). "Neural processing of amplitude-modulated sounds", Physiol. Rev. Vol 84, 541577. [Crossref]
19. Kelly E. F., Folger S. E. (1999). "EEG evidence of stimulus-directed response dynamics in human somatosensory cortex", Brain Res. Vol 815, 326336. [Crossref]
20. Kingdon F. A. A., Prins N. (2016). Psychophysics: a Practical Introduction, 2nd edn. Academic Press, London, UK.
21. Lakatos P., Chen C.-M., O’Connell M. N., Mills A., Schroeder C. E. (2007). "Neuronal oscillations and multisensory interaction in primary auditory cortex", Neuron Vol 53, 279292. [Crossref]
22. Langdon A. J., Boonstra T. W., Breakspear M. (2011). "Multi-frequency phase locking in human somatosensory cortex", Progr. Biophys. Mol. Biol. Vol 105, 5866. [Crossref]
23. Lewis R., Noppeney U. (2010). "Audiovisual synchrony improves motion discrimination via enhanced connectivity between early visual and auditory areas", J. Neurosci. Vol 30, 1232912339. [Crossref]
24. Liegeois-Chauvel C., Lorenzi C., Trebuchon A., Regis J., Chauvel P. (2004). "Temporal envelope processing in the human left and right auditory cortices", Cereb. Cortex Vol 14, 731740. [Crossref]
25. Meredith M. A., Nemitz J. W., Stein B. E. (1987). "Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors", J. Neurosci. Vol 7, 32153529.
26. Muller G. R., Neuper C., Pfurtscheller G. (2001). "“Resonance-like” frequencies of sensorimotor areas evoked by repetitive tactile stimulation", Biomed. Tech. (Berl.) Vol 46, 186190.
27. Näätänen R., Picton T. (1987). "The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure", Psychophysiology Vol 24, 375425. [Crossref]
28. Nangini C., Ross B., Tam F., Graham S. J. (2006). "Magnetoencephalographic study of vibrotactile evoked transient and steady-state responses in human somatosensory cortex", Neuroimage Vol 33, 252262. [Crossref]
29. Noesselt T., Rieger J. W., Schoenfeld M. A., Kanowski M., Hinrichs H., Heinze H.-J., Driver J. (2007). "Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices", J. Neurosci. Vol 27, 1143111441. [Crossref]
30. Nourski K. V., Brugge J. F. (2011). "Representation of temporal sound features in the human auditory cortex", Rev. Neurosci. Vol 22, 187203. [Crossref]
31. Nozaradan S., Peretz I., Missal M., Mouraux A. (2011). "Tagging the neuronal entrainment to beat and meter", J. Neurosci. Vol 31, 1023410240. [Crossref]
32. Nozaradan S., Peretz I., Mouraux A. (2012). "Steady-state evoked potentials as an index of multisensory temporal binding", Neuroimage Vol 60, 2128. [Crossref]
33. Nozaradan S., Zerouali Y., Peretz I., Mouraux A. (2013). "Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat", Cereb. Cortex Vol 25, 736747. [Crossref]
34. Oostenveld R., Fries P., Maris E., Schoffelen J. M. (2011). "FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data", Comput. Intell. Neurosci. Vol 2011, 156869. DOI:10.1155/2011/156869. [Crossref]
35. Picton T. W., Skinner C. R., Champagne S. C., Kellett A. J., Maiste A. C. (1987). "Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone", J. Acoust. Soc. Am. Vol 82, 165178. [Crossref]
36. Picton T. W., John M. S., Dimitrijevic A., Purcell D. (2003). "Human auditory steady-state responses", Int. J. Audiol. Vol 42, 177219. [Crossref]
37. Porcu E., Keitel C., Müller M. M. (2014). "Visual, auditory and tactile stimuli compete for early sensory processing capacities within but not between senses", NeuroImage Vol 97, 224235. [Crossref]
38. Prins N., Kingdon F. (2009). Palamedes: Matlab routines for analyzing psychophysical data. Available at www.palamedestoolbox.org.
39. Rees A., Green G. G., Kay R. H. (1986). "Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man", Hear. Res. Vol 23, 123133. [Crossref]
40. Ro T., Hsu J., Yasar N. E., Elmore L. C., Beauchamp M. S. (2009). "Sound enhances touch perception", Exp. Brain Res. Vol 195, 135143. [Crossref]
41. Roß B., Borgmann C., Draganova R., Roberts L. E., Pantev C. (2000). "A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones", J. Acoust. Soc. Am. Vol 108, 679691. [Crossref]
42. Saal H. P., Wang X., Bensmaia S. J. (2016). "Importance of spike timing in touch: an analogy with hearing?" Curr. Opin. Neurobiol. Vol 40, 142149. [Crossref]
43. Senkowski D., Saint-Amour D., Hofle M., Foxe J. J. (2011). "Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness", Neuroimage Vol 56, 22002208. [Crossref]
44. Senkowski D., Gomez-Ramirez M., Lakatos P., Wylie G. R., Molholm S., Schroeder C. E., Foxe J. J. (2007). "Multisensory processing and oscillatory activity: analyzing non-linear electrophysiological measures in humans and simians", Exp. Brain Res. Vol 177, 184195. [Crossref]
45. Snyder A. Z. (1992). "Steady-state vibration evoked potentials: description of technique and characterization of responses", Electroencephalogr. Clin. Neurophysiol. Vol 84, 257268. [Crossref]
46. Stein B. E., Meredith M. A. (1993). The Merging of the Senses. MIT Press, Cambridge, MA, USA.
47. Tobimatsu S., Zhang Y. M., Kato M. (1999). "Steady-state vibration somatosensory evoked potentials: physiological characteristics and tuning function", Clin. Neurophysiol. Vol 110, 19531958. [Crossref]
48. Van Atteveldt N. M., Formisano E., Blomert L., Goebel R. (2007). "The effect of temporal asynchrony on the multisensory integration of letters and speech sounds", Cereb. Cortex Vol 17, 962974. [Crossref]
49. Viemeister N. F. (1979). "Temporal modulation transfer functions based upon modulation thresholds", J. Acoust. Soc. Am. Vol 66, 13641380. [Crossref]
50. Wald A. (1943). "Tests of hypotheses concernding several parameters when the number of obervations is large", Trans. Am. Math. Soc. Vol 54, 426482. [Crossref]
51. Weisenberger J. M. (1986). "Sensitivity to amplitude-modulated vibrotactile signals", J. Acoust. Soc. Am. Vol 80, 17071715. [Crossref]
52. Wilson E. C., Reed C. M., Braida L. D. (2009). "Integration of auditory and vibrotactile stimuli: effects of phase and stimulus-onset asynchrony", J. Acoust. Soc. Am. Vol 126, 19601974. [Crossref]
53. Wilson E. C., Reed C. M., Braida L. D. (2010). "Integration of auditory and vibrotactile stimuli: effects of frequency", J. Acoust. Soc. Am. Vol 127, 30443059. [Crossref]
54. Yau J. M., Olenczak J. B., Dammann J. F., Bensmaia S. J. (2009). "Temporal frequency channels are linked across audition and touch", Curr. Biol. Vol 19, 561566. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-00002549
Loading

Article metrics loading...

/content/journals/10.1163/22134808-00002549
2018-01-19
2018-06-18

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation