Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Open Access Similarities in Autistic and Neurotypical Visual–Haptic Perception When Making Judgements About Conflicting Sensory Stimuli

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Similarities in Autistic and Neurotypical Visual–Haptic Perception When Making Judgements About Conflicting Sensory Stimuli

  • HTML
  • PDF
Add to Favorites
You must be logged in to use this functionality

For more content, see Seeing and Perceiving and Spatial Vision.

A number of studies have shown that multisensory performance is well predicted by a statistically optimal maximum likelihood estimation (MLE) model. Under this model unisensory estimates are combined additively and weighted according to relative reliability. Recent theories have proposed that atypical sensation and perception commonly reported in autism spectrum condition (ASC) may result from differences in the use of reliability information. Furthermore, experimental studies have indicated that multisensory processing is less effective in those with the condition in comparison to neurotypical (NT) controls. In the present study, adults with ASC (n=13) and a matched NT group (n=13) completed a visual–haptic size judgement task (cf. Gori et al., 2008) in which participants compared the height of wooden blocks using either vision or haptics, and in a dual modality condition in which visual–haptic stimuli were presented in size conflict. Participants with ASC tended to produce more reliable estimates than the NT group. However, dual modality performance was not well predicted by the MLE model for either group. Performance was subsequently compared to alternative models in which the participant either switched between modalities trial to trial (rather than integrating) and a model of non-optimal integration. Performance of both groups was statistically comparable to the cue-switching model. These findings suggest that adults with ASC adopted a similar strategy to NTs when processing conflicting visual–haptic information. Findings are discussed in relation to multisensory perception in ASC and methodological considerations associated with multisensory conflict paradigms.

Affiliations: 1: 1Division of Neuroscience and Experimental Psychology, University of Manchester, Oxford Road, M139PL, UK ; 2: 2Division of Human Communication, Development and Hearing, University of Manchester, UK

*To whom correspondence should be addressed. E-mail: daniel.poole@manchester.ac.uk
Loading data from figshare Loading data from figshare

A number of studies have shown that multisensory performance is well predicted by a statistically optimal maximum likelihood estimation (MLE) model. Under this model unisensory estimates are combined additively and weighted according to relative reliability. Recent theories have proposed that atypical sensation and perception commonly reported in autism spectrum condition (ASC) may result from differences in the use of reliability information. Furthermore, experimental studies have indicated that multisensory processing is less effective in those with the condition in comparison to neurotypical (NT) controls. In the present study, adults with ASC (n=13) and a matched NT group (n=13) completed a visual–haptic size judgement task (cf. Gori et al., 2008) in which participants compared the height of wooden blocks using either vision or haptics, and in a dual modality condition in which visual–haptic stimuli were presented in size conflict. Participants with ASC tended to produce more reliable estimates than the NT group. However, dual modality performance was not well predicted by the MLE model for either group. Performance was subsequently compared to alternative models in which the participant either switched between modalities trial to trial (rather than integrating) and a model of non-optimal integration. Performance of both groups was statistically comparable to the cue-switching model. These findings suggest that adults with ASC adopted a similar strategy to NTs when processing conflicting visual–haptic information. Findings are discussed in relation to multisensory perception in ASC and methodological considerations associated with multisensory conflict paradigms.

Loading

Full text loading...

/deliver/journals/22134808/30/6/22134808_030_06_s004_text.html?itemId=/content/journals/10.1163/22134808-00002551&mimeType=html&fmt=ahah
/content/journals/10.1163/22134808-00002551
Loading

Data & Media loading...

1. Alais D., Burr D. (2004). "The ventriloquist effect results from near-optimal bimodal integration", Curr. Biol. Vol 14, 257262. [Crossref]
2. American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Publishing, Arlington, VA, USA.
3. Anderson J. S., Druzgal T. J., Froehlich A., Dubray M. B., Lange N., Alexander A. L., Abildskov T., Cariello A. N., Cooperrider J. R., Bigler E. D., Lainhart J. E. (2011). "Decreased interhemispheric functional connectivity in autism", Cereb. Cortex Vol 21, 11341146. [Crossref]
4. Brandwein A. B., Foxe J. J., Butler J. S., Russo N. N., Altschuler T. S., Gomes H., Molholm S. (2013). "The development of multisensory integration in high-functioning autism: high-density electrical mapping and psychophysical measures reveal impairments in the processing of audiovisual inputs", Cereb. Cortex Vol 23, 13291341. [Crossref]
5. Brock J., Brown C. C., Boucher J., Rippon G. (2002). "The temporal binding deficit hypothesis of autism", Dev. Psychopathol. Vol 14, 209224. [Crossref]
6. Cascio C. J., Foss-Feig J. H., Burnette C. P., Heacock J. L., Cosby A. A. (2012). "The rubber hand illusion in children with autism spectrum disorders: delayed influence of combined tactile and visual input on proprioception", Autism Vol 16, 406419. [Crossref]
7. Cellini C., Kaim L., Drewing K. (2013). "Visual and haptic integration in the estimation of softness of deformable objects", I-Perception Vol 4, 516531. [Crossref]
8. Cherkassky V. L., Kana R. K., Keller T. A., Just M. A. (2006). "Functional connectivity in a baseline resting-state network in autism", Neuroreport Vol 17, 16871690. [Crossref]
9. Collignon O., Charbonneau G., Peters F., Nassim M., Lassonde M., Lepore F., Mottron L., Bertone A. (2013). "Reduced multisensory facilitation in persons with autism", Cortex Vol 49, 17041710. [Crossref]
10. Courchesne E. (2004). "Brain development in autism: early overgrowth followed by premature arrest of growth", Ment. Retard. Dev. Disabil. Res. Rev. Vol 10, 106111. [Crossref]
11. Courchesne E., Carper R., Akshoomoff N. (2003). "Evidence of brain overgrowth in the first year of life in autism", JAMA Vol 290(3), 337344. [Crossref]
12. Crane L., Goddard L., Pring L. (2009). "Sensory processing in adults with autism spectrum disorders", Autism Vol 13, 215228. [Crossref]
13. De Gelder B., Bertelson P. (2003). "Multisensory integration, perception and ecological validity", Trends Cogn. Sci. Vol 7, 460467. [Crossref]
14. Dienes Z. (2014). "Using Bayes to get the most out of non-significant results", Front. Psychol. Vol 5, 117. http://doi.org/10.3389/fpsyg.2014.00781. [Crossref]
15. Dinstein I., Heeger D. J., Lorenzi L., Minshew N. J., Malach R., Behrmann M. (2012). "Unreliable evoked responses in autism", Neuron Vol 75, 981991. [Crossref]
16. Dinstein I., Heeger D. J., Behrmann M. (2015). "Neural variability: friend or foe?" Trends Cogn. Sci. Vol 19, 322328. [Crossref]
17. Ernst M. O. (2008). "Multisensory integration: a late bloomer?" Curr. Biol. Vol 18, 519521. [Crossref]
18. Ernst M. O., Banks M. S. (2002). "Humans integrate visual and haptic information in a statistically optimal fashion", Nature Vol 415(6870), 429433. [Crossref]
19. Foss-Feig J. H., Kwakye L. D., Cascio C. J., Burnette C. P., Kadivar H., Stone W. L., Wallace M. T. (2010). "An extended multisensory temporal binding window in autism spectrum disorders", Exp. Brain Res. Vol 203, 381389. [Crossref]
20. Gepshtein S., Banks M. S. (2003). "Viewing geometry determines how vision and haptics combine in size perception", Curr. Biol. Vol 13, 483488. [Crossref]
21. Gepshtein S., Burge J., Ernst M. O., Banks M. S. (2005). "The combination of vision and touch depends on spatial proximity", J. Vis. Vol 5, 10131023.
22. Gori M., Del Viva M., Sandini G., Burr D. C. (2008). "Young children do not integrate visual and haptic form information", Curr. Biol. Vol 18, 694698. [Crossref]
23. Grapel J. N., Cicchetti D. V., Volkmar F. R. (2015). "Sensory features as diagnostic criteria for autism: sensory features in autism", Yale J. Biol. Med. Vol 88, 6971.
24. Haswell C. C., Izawa J., Dowell L. R., Mostofsky S. H., Shadmehr R. (2009). "Representation of internal models of action in the autistic brain", Nat. Neurosci. Vol 12, 970972. [Crossref]
25. Helbig H. B., Ernst M. O. (2007). "Knowledge about a common source can promote visual–haptic integration", Perception Vol 36, 15231533. [Crossref]
26. Irwin J. R., Tornatore L. A., Brancazio L., Whalen D. H. (2011). "Can children with autism spectrum disorders “hear” a speaking face?" Child Dev. Vol 82, 13971403. [Crossref]
27. Itahashi T., Yamada T., Watanabe H., Nakamura M., Ohta H., Kanai C., Iwanami A., Kato N., Hashimoto R. I. (2015). "Alterations of local spontaneous brain activity and connectivity in adults with high-functioning autism spectrum disorder", Mol. Autism Vol 6, 30. http://doi.org/10.1186/s13229-015-0026-z. [Crossref]
28. Jäkel F., Wichmann F. A. (2006). "Spatial four-alternative forced-choice method is the preferred psychophysical method for naïve observers", J. Vis. Vol 6, 13071322.
29. JASP Team (2016). JASP (Version 0.7.5.5) [Computer software].
30. Jovanovic B., Drewing K. (2014). "The influence of intersensory discrepancy on visuo-haptic integration is similar in 6-year-old children and adults", Front. Psychol. Vol 5, 57. http://doi.org/10.3389/fpsyg.2014.00057. [Crossref]
31. Just M. A., Cherkassky V. L., Keller T. A., Kana R. K., Minshew N. J. (2007). "Functional and anatomical cortical underconnectivity in autism: evidence from an fmri study of an executive function task and corpus callosum morphometry", Cereb. Cortex Vol 17, 951961. [Crossref]
32. Kingdom F. A. A., Prins N. (2009). Psychophysics: a Practical Introduction. Academic Press, London, UK.
33. Kuschel M., Di Luca M., Buss M., Klatzky R. L. (2010). "Combination and integration in the perception of visual–haptic compliance information", IEEE Transn Haptics Vol 3, 234244. [Crossref]
34. Kwakye L. D., Foss-Feig J. H., Cascio C. J., Stone W. L., Wallace M. T. (2011). "Altered auditory and multisensory temporal processing in autism spectrum disorders", Front. Integr. Neurosci. Vol 4, 129. http://doi.org/10.3389/fnint.2010.00129. [Crossref]
35. Landy M. S., Kojima H. (2001). "Ideal cue combination for localizing texture-defined edges", J. Opt. Soc. Am. Vol 18, 23072322. [Crossref]
36. Landy M., Maloney L., Johnston E., Young M. (1995). "Measurement and modeling of depth cue combination: in defense of weak fusion", Vis. Res. Vol 35, 389412. [Crossref]
37. Lawson R. P., Rees G., Friston K. J. (2014). "An aberrant precision account of autism", Front. Hum. Neurosci. Vol 8, 302. http://doi.org/10.3389/fnhum.2014.00302. [Crossref]
38. Leekam S. R., Nieto C., Libby S. J., Wing L., Gould J. (2007). "Describing the sensory abnormalities of children and adults with autism", J. Autism Dev. Disord. Vol 37, 894910. [Crossref]
39. Leys C., Ley C., Klein O., Bernard P., Licata L. (2013). "Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median", J. Exp. Soc. Psychol. Vol 49, 764766. [Crossref]
40. Little L. M., Ausderau K., Sideris J., Baranek G. T. (2015). "Activity participation and sensory features among children with autism spectrum disorders", J. Autism Dev. Disord. Vol 45, 29812990. [Crossref]
41. Lord C., Risi S., Lambrecht L., Cook E. H., Leventhal B. L., DiLavore P. C., Pickles A., Rutter M. (2000). "The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism", J. Autism Dev. Disord. Vol 30, 205223. [Crossref]
42. Mongillo E. A., Irwin J. R., Whalen D. H., Klaiman C., Carter A. S., Schultz R. T. (2008). "Audiovisual processing in children with and without autism spectrum disorders", J. Autism Dev. Disord. Vol 38, 13491358. [Crossref]
43. Nakano T., Kato N., Kitazawa S. (2012). "Superior haptic-to-visual shape matching in autism spectrum disorders", Neuropsychologia Vol 50, 696703. [Crossref]
44. Nardini M., Jones P., Bedford R., Braddick O. (2008). "Development of cue integration in human navigation", Curr. Biol. Vol 18, 689693. [Crossref]
45. Oldfield R. C. (1971). "The assement and analysis of handedness: the Edinbugh inventory", Neuropsychologia Vol 9, 97113. [Crossref]
46. Pellicano E. (2013). "Sensory symptoms in autism: a blooming, buzzing confusion?" Child Dev. Perspect. Vol 7, 143148. [Crossref]
47. Pellicano E., Burr D. (2012). "When the world becomes “too real”: a Bayesian explanation of autistic perception", Trends Cogn. Sci. Vol 16, 504510. [Crossref]
48. Poole D., Gowen E., Warren P. A., Poliakoff E. (2015). "Investigating visual–tactile interactions over time and space in adults with autism", J. Autism Dev. Disord. Vol 45, 33163326. [Crossref]
49. Rahnev D., Denison D. (2016). "Suboptimality in perception", bioRxiv. http://doi.org/10.1101/060194.
50. Robertson A. E., Simmons D. R. (2013). "The relationship between sensory sensitivity and autistic traits in the general population", J. Autism Dev. Disord. Vol 43, 775784. [Crossref]
51. Rohde M., Van Dam L. C. J., Ernst M. (2015). "Statistically optimal multisensory cue integration: a practical tutorial", Multisens. Res. Vol 29, 139.
52. Rubenstein J. L. R., Merzenich M. M. (2003). "Model of autism: increased ratio of excitation/inhibition in key neural systems", Genes Brain Behav. Vol 2, 255267. [Crossref]
53. Russo N., Foxe J. J., Brandwein A. B., Altschuler T., Gomes H., Molholm S. (2010). "Multisensory processing in children with autism: high-density electrical mapping of auditory-somatosensory integration", Autism Res. Vol 3, 253267. [Crossref]
54. Serwe S., Trommershäuser J. (2009). "Combination of noisy directional visual and proprioceptive information", J. Vis. Vol 9, 114.
55. Stevenson R. A., Siemann J. K., Woynaroski T. G., Schneider B. C., Eberly H. E., Camarata S. M., Wallace M. T. (2014). "Evidence for diminished multisensory integration in autism spectrum disorder", J. Autism Dev. Disord. Vol 44, 31613167. [Crossref]
56. Takahashi C., Diedrichsen J., Watt S. J. (2009). "Integration of vision and haptics during tool use", J. Vis. Vol 9, 113.
57. Tomchek S. D., Dunn W. (2007). "Sensory processing in children with and without autism: a comparative study using the short sensory profile", Am. J. Occup. Ther. Vol 61, 190200. [Crossref]
58. Wechsler D. (1999). Wechsler Abbreviated Scale of Intelligence. The Psychological Corporation, San Antonia, TX, USA.
59. Young M. J., Landy M. S., Maloney L. T. (1993). "A perturbation analysis of depth perception from combinations of texture and motion cues", Vis. Res. Vol 33, 26852696. [Crossref]
60. Zaidel A., Goin-Kochel R. P., Angelaki D. E. (2015). "Self-motion perception in autism is compromised by visual noise but integrated optimally across multiple senses", Proc. Natl Acad. Sci. USA Vol 112, 64616466. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-00002551
Loading
Loading

Article metrics loading...

/content/journals/10.1163/22134808-00002551
2017-08-02
2017-08-19

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation