Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

What Can Illusory Conjunctions Reveal About Synaesthetic Bindings?

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

The visual system successfully binds the shapes and colours of objects; therefore, our visual experience regarding the objects around us is coherent. However, this binding process can break down when attention is diverted, producing illusory conjunctions (ICs); for example, when presented with a red 2 and a green 5, the observer may report a green 2 and a red 5. The strongest observation of binding in human cognition is found in synaesthesia. In grapheme–colour synaesthesia, linguistic stimuli (e.g., letters or numbers) are strongly associated with colours. It is debatable whether these highly stable bindings constitute a form of early binding that occurs outside the focus of attention. We examined for the first time the occurrence of ICs in grapheme–colour synaesthesia. Experiment 1 replicated our previous finding, showing the effects of numerical distance on ICs (Arend et al., Psychon. Bull. Rev. 2013, 20, 1181–1186). Participants viewed a display containing two centrally presented letters and two coloured numbers and were asked to report: (1) whether the letters were same/different, (2) the colour of the larger number, and (3) the level of confidence concerning the colour of the number. Experiment 2 used a modified version of this task. Synaesthetes (N=5) and controls (N=15) viewed number–colour pairs that were congruent or incongruent with that of the synaesthetic association. Grapheme–colour synaesthesia significantly affected ICs on incongruent but not on congruent trials. Our findings strongly support the notion that shape and colour are free-floating features in synaesthesia, similar to what is observed in normal cognition.

Affiliations: 1: Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel

*To whom correspondence should be addressed. E-mail: arend.psy@gmail.com
Loading

Full text loading...

/content/journals/10.1163/22134808-00002555
Loading

Data & Media loading...

1. Arend I., Naparstek S., Henik A. (2013). "Numerical-spatial representation affects spatial coding: binding errors across the numerical distance effect", Psychon. Bull. Rev. Vol 20, 11811186. [Crossref]
2. Ashby F. G., Prinzmetal W., Ivry R., Maddox T. (1996). "A formal theory of illusory conjunctions", Psychol. Rev. Vol 103, 165192. [Crossref]
3. Bernstein L. J., Robertson L. C. (1998). "Illusory conjunctions of color and motion with shape following bilateral parietal lesions", Psychol. Sci. Vol 9, 167175. [Crossref]
4. Cinel C., Humphreys G. W., Poli R. (2002). "Cross-modal illusory conjunctions between vision and touch", J. Exp. Psychol. Hum. Percept. Perform. Vol 28, 12431266. [Crossref]
5. Cohen A., Ivry R. (1989). "Illusory conjunctions inside and outside the focus of attention", J. Exp. Psychol. Hum. Percept. Perform. Vol 15, 650663. [Crossref]
6. Cohen A., Rafal R. D. (1991). "Attention and feature integration: illusory conjunctions in a patient with a parietal lobe lesion", Psychol. Sci. Vol 2, 106110. [Crossref]
7. Eagleman D. M., Kagan A. D., Nelson S. S., Sagaram D., Sarma A. K. (2007). "A standardized test battery for the study of synesthesia", J. Neurosci. Meth. Vol 159, 139145. [Crossref]
8. Friedman-Hill S. R., Robertson L. C., Treisman A. (1995). "Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions", Science Vol 269, 853855. [Crossref]
9. Humphreys G. W., Cinel C., Wolfe J., Olson A., Klempen N. (2000). "Fractionating the binding process: neuropsychological evidence distinguishing binding of form from binding of surface features", Vis. Res. Vol 40, 15691596. [Crossref]
10. Mattingley J. B., Rich A. N., Yelland G., Bradshaw J. L. (2001). "Unconscious priming eliminates automatic binding of colour and alphanumeric form in synaesthesia", Nature Vol 410, 580582. [Crossref]
11. Mattingley J. B., Payne J. M., Rich A. N. (2006). "Attentional load attenuates synaesthetic priming effects in grapheme–colour synaesthesia", Cortex Vol 42, 213221. [Crossref]
12. Novich S., Cheng S., Eagleman D. M. (2011). "Is synaesthesia one condition or many? A large-scale analysis reveals subgroups", J. Neuropsychol. Vol 5, 353371. [Crossref]
13. Palmeri T. J., Blake R., Marois R., Flanery M. A., Whetsell W. (2002). "The perceptual reality of synesthetic colors", Proc. Natl Acad. Sci. USA Vol 99, 41274131. [Crossref]
14. Prinzmetal W. (1981). "Principles of feature integration in visual perception", Percept. Psychophys. Vol 30, 330340. [Crossref]
15. Prinzmetal W., Henderson D., Ivry R. (1995). "Loosening the constraints on illusory conjunctions: assessing the roles of exposure duration and attention", J. Exp. Psychol. Hum. Percept. Perform. Vol 21, 13621375. [Crossref]
16. Prinzmetal W., Ivry R. B., Beck D., Shimizu N. (2002). "A measurement theory of illusory conjunctions", J. Exp. Psychol. Hum. Percept. Perform. Vol 28, 251269. [Crossref]
17. Ramachandran V. S., Hubbard E. M. (2001). "Psychophysical investigations into the neural basis of synaesthesia", Proc. Biol. Sco. Vol 268, 979983. [Crossref]
18. Rich A. N., Karstoft K. I. (2013). "Exploring the benefit of synaesthetic colours: testing for ‘pop-out’ in individuals with grapheme–colour synaesthesia", Cogn. Neuropsychol. Vol 30, 110125. [Crossref]
19. Rich A. N., Mattingley J. B. (2010). "Out of sight, out of mind: the attentional blink can eliminate synaesthetic colours", Cognition Vol 114, 320328. [Crossref]
20. Robertson L. C. (2003). "Binding, spatial attention and perceptual awareness", Nat. Rev. Neurosci. Vol 4, 93102. [Crossref]
21. Robertson L. C., Sagiv N. (Eds) (2004). Synesthesia: Perspectives From Cognitive Neuroscience. Oxford University Press, Oxford, UK.
22. Robertson L., Treisman A., Friedman-Hill S., Grabowecky M. (1997). "The interaction of spatial and object pathways: evidence from Balint’s syndrome", J. Cogn. Neurosci. Vol 9, 295317. [Crossref]
23. Rothen N., Meier B. (2009). "Do synesthetes have a general advantage in visual search and episodic memory? A case for group studies", PLoS One Vol 4, e5037. DOI:. [Crossref]
24. Rouw R., Scholte H. S., Colizoli O. (2011). "Brain areas involved in synaesthesia: a review", J. Neuropsychol. Vol 5, 214242. [Crossref]
25. Sagiv N., Heer J., Robertson L. (2006). "Does binding of synesthetic color to the evoking grapheme require attention?" Cortex Vol 42, 232242. [Crossref]
26. Smilek D., Dixon M. J., Cudahy C., Merikle P. M. (2001). "Synaesthetic photisms influence visual perception", J. Cogn. Neurosci. Vol 13, 930936. [Crossref]
27. Treisman A. (1996). "The binding problem", Curr. Opin. Neurobiol. Vol 6, 171178. [Crossref]
28. Treisman A. M., Gelade G. (1980). "A feature-integration theory of attention", Cogn. Psychol. Vol 12, 97136. [Crossref]
29. Treisman A., Schmidt H. (1982). "Illusory conjunctions in the perception of objects", Cogn. Psychol. Vol 14, 107141. [Crossref]
30. Ward R., Danziger S., Owen V., Rafal R. (2002). "Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinar", Nat. Neurosci. Vol 5, 99100. [Crossref]
31. Ward J., Jonas C., Dienes Z., Seth A. (2010). "Grapheme–colour synaesthesia improves detection of embedded shapes, but without pre-attentive ‘pop-out’ of synaesthetic colour", Proc. Biol. Sci. Vol 277, 10211026. [Crossref]
32. Weiss P. H., Fink G. R. (2009). "Grapheme–colour synaesthetes show increased grey matter volumes of parietal and fusiform cortex", Brain Vol 13(2), 6570. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-00002555
Loading

Article metrics loading...

/content/journals/10.1163/22134808-00002555
2017-05-30
2017-08-21

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation