Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Cognitive Styles Differentiate Crossmodal Correspondences Between Pitch Glide and Visual Apparent Motion

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

Crossmodal correspondences are the automatic associations that most people have between different basic sensory stimulus attributes, dimensions, or features. For instance, people often show a systematic tendency to associate moving objects with changing pitches. Cognitive styles are defined as an individual’s consistent approach to think, perceive, and remember information, and they reflect qualitative rather than quantitative differences between individuals in their thinking processes. Here we asked whether cognitive styles played a role in modulating the crossmodal interaction. We used the visual Ternus display in our study, since it elicits two distinct apparent motion percepts: element motion (with a shorter interval between the two Ternus frames) and group motion (with a longer interval between the two frames). We examined the audiovisual correspondences between the visual Ternus movement directions (upward or downward) and the changes of pitches of concurrent glides (ascending frequency or descending frequency). Moreover, we measured the cognitive styles (with the Embedded Figure Test) for each participant. The results showed that congruent correspondence between pitch-ascending (decreasing) glides and moving upward (downward) visual directions led to a more dominant percept of ‘element motion’, and such an effect was typically observed in the field-independent group. Importantly, field-independent participants demonstrated a high efficiency for identifying the properties of audiovisual events and applying the crossmodal correspondence in crossmodal interaction. The results suggest cognitive styles could differentiate crossmodal correspondences in crossmodal interaction.

Affiliations: 1: 1Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China ; 2: 2University of Chinese Academy of Sciences, Beijing 100049, China ; 3: 3School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China ; 4: 4Key Laboratory of Machine Perception, Peking University, Beijing 100871, China

*To whom correspondence should be addressed. E-mail:,

Full text loading...


Data & Media loading...

1. Alais D., Lorenceau J. (2002). "Perceptual grouping in the Ternus display: evidence for an ‘association field’ in apparent motion", Vis. Res. Vol 42, 10051016. [Crossref]
2. Amador C. J. A., Kirchner N. T. (1999). "Correlations among scores on measures of field dependence and independence cognitive style, cognitive ability, and sustained attention", Percept. Mot. Skills Vol 88, 236239. [Crossref]
3. Amenedo E., Pazo-Alvarez P., Cadaveira F. (2007). "Vertical asymmetries in pre-attentive detection of changes in motion direction", Int. J. Psychophys. Vol 64, 184189. [Crossref]
4. Axelrod S., Cohen L. D. (1961). "Senescence and embedded-figure performance in vision and touch", Percept. Mot. Skills Vol 12, 283288. [Crossref]
5. Bien N., Ten Oever S., Goebel R., Sack A. T. (2012). "The sound of size: crossmodal binding in pitch-size synesthesia: a combined TMS, EEG, and psychophysics study", NeuroImage Vol 59, 663672. [Crossref]
6. Brainard D. H. (1997). "The psychophysics toolbox", Spat. Vis. Vol 10, 433436. [Crossref]
7. Bremner A., Caparos S., Davidoff J., de Fockert J., Linnell K., Spence C. (2013). "“Bouba” and “Kiki” in Namibia? A remote culture make similar shape–sound matches, but different shape–taste matches to Westerners", Cognition Vol 126, 165172. [Crossref]
8. Carnevale M. J., Harris L. R. (2016). "Which direction is up for a high pitch?" Multisens. Res. Vol 29, 113132. [Crossref]
9. Cecere R., Rees G., Romei V. (2015). "Individual differences in alpha frequency drive crossmodal illusory perception", Curr. Biol. Vol 25, 231235. [Crossref]
10. Chen L., Vroomen J. (2013). "Intersensory binding across space and time: a tutorial review", Atten. Percept. Psychophys. Vol 75, 790811. [Crossref]
11. Chen L., Shi Z., Muller H. J. (2010). "Influences of intra- and crossmodal grouping on visual and tactile Ternus apparent motion", Brain Res. Vol 1354, 152162. [Crossref]
12. Chen Y. C., Huang P. C., Woods A., Spence C. (2016a). "When “Bouba” equals “Kiki”: cultural commonalities and cultural differences in sound–shape correspondences", Sci. Rep. Vol 6, 26681. DOI:.
13. Chen L., Zhang M., Ai F., Xie W., Meng X. (2016b). "Crossmodal synesthetic congruency improves visual timing in dyslexic children", Res. Dev. Disabil. Vol 55, 1426. [Crossref]
14. Chiou R., Rich A. N. (2012a). "Cross-modality correspondence between pitch and spatial location modulates attentional orienting", Perception Vol 41, 339353. [Crossref]
15. Chiou R., Rich A. N. (2012b). Perceptual difficulty and speed pressure reveal different behavioural effects of voluntary and involuntary attention, in: 39th Australasian Experimental Psychology Conference, Sydney, Australia.
16. Clark H. H., Brownell H. H. (1976). "Position, direction, and their perceptual integrality", Percept. Psychophys. Vol 19, 328334. [Crossref]
17. Danckert J. A., Goodale M. A. (2003). "Ups and downs in the visual control of action", in: Taking Action, Johnson S. H. (Ed.), pp.  2964. MIT Press, Cambridge, MA, USA.
18. Donohue S. E., Green J. J., Wolforff M. G. (2015). "The effects of attention on the temporal integration of multisensory stimuli", Front. Integr. Neurosci. Vol 9, 32. DOI:. [Crossref]
19. Evans K. K., Treisman A. (2010). "Natural cross-modal mappings between visual and auditory features", J. Vis. Vol 10, 112.
20. Frens M. A., Van Opstal A. J., Van der Willigen R. F. (1995). "Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements", Percept. Psychophys. Vol 57, 802816. [Crossref]
21. Gallace A., Spence C. (2006). "Multisensory synesthetic interactions in the speeded classification of visual size", Percept. Psychophys. Vol 68, 11911203. [Crossref]
22. Goodenough D. R. (1976). "The role of individual differences in field dependence as a factor in learning and memory", Psychol. Bull. Vol 83, 675694. [Crossref]
23. Hackley S. A. (1993). "An evaluation of the automaticity of sensory processing using event-related potentials and brain-stem reflexes", Psychophysiology Vol 30, 415428. [Crossref]
24. Harrar V., Harris L. R. (2007). "Multimodal Ternus: visual, tactile, and visuo-tactile grouping in apparent motion", Perception Vol 36, 14551464. [Crossref]
25. Harrar V., Tammam J., Pérez-Bellido A., Pitt A., Stein J., Spence C. (2014). "Multisensory integration and attention in developmental dyslexia", Curr. Biol. Vol 24, 531535. [Crossref]
26. He Z. J., Ooi T. L. (1999). "Perceptual organization of apparent motion in the Ternus display", Perception Vol 28, 877892. [Crossref]
27. He S., Cavanagh P., Intriligator J. (1996). "Attentional resolution and the locus of visual awareness", Nature Vol 383, 334337. [Crossref]
28. Johnson J. A., Zatorre R. J. (2005). "Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates", Cereb. Cortex Vol 15, 16091620. [Crossref]
29. Jonassen D. H., Grabowski B. (1993). Individual Differences and Instruction. Allen and Bacon, New York, NY, USA.
30. Jones J. A., Jarick M. (2006). "Multisensory integration of speech signals: the relationship between space and time", Exp. Brain Res. Vol 174, 588594. [Crossref]
31. Klapetek A., Ngo M. K., Spence C. (2012). "Do crossmodal correspondences enhance the facilitatory effect of auditory cues on visual search?" Atten. Percept. Psychophys. Vol 74, 11541167. [Crossref]
32. Kozhevnikov M. (2007). "Cognitive styles in the context of modern psychology: toward an integrated framework of cognitive style", Psychol. Bull. Vol 133, 464481. [Crossref]
33. Kramer P., Yantis S. (1997). "Perceptual grouping in space and time: evidence from the Ternus display", Percept. Psychophys. Vol 59, 8799. [Crossref]
34. Krugliak A., Noppeney U. (2016). "Synaesthetic interactions across vision and audition", Neuropsychologia Vol 88, 6573. [Crossref]
35. Levine M. W., McAnany J. J. (2005). "The relative capabilities of the upper and lower visual hemifields", Vis. Res. Vol 45, 28202830. [Crossref]
36. Liu W. H. (2003). "Field dependence-independence and sports with a preponderance of closed or open skill", J. Sport Behav. Vol 3, 285297.
37. Lopez C., Bachofner C., Mercier M., Blanke O. (2009). "Gravity and observer’s body orientation influence the visual perception of human body postures", J. Vis. Vol 9, 114.
38. Maeda F., Kanai R., Shimojo S. (2004). "Changing pitch induced visual motion illusion", Curr. Biol. Vol 14, R990R991. [Crossref]
39. Makovac E., Gerbino W. (2010). "Sound–shape congruency affects the multisensory response enhancement", Vis. Cogn. Vol 18, 133137.
40. Marks L. E. (1987). "On cross-modal similarity: auditory-visual interactions in speeded discrimination", J. Exp. Psychol. Hum. Percept. Perform. Vol 13, 384394. [Crossref]
41. Maunsell J. H., Van Essen D. C. (1987). "Topographic organization of the middle temporal visual area in the macaque monkey: representational biases and the relationship to callosal connections and myeloarchitectonic boundaries", J. Comp. Neurol. Vol 266, 535555. [Crossref]
42. Molholm S., Walter R., Daniel C. J., John J. F. (2004). "Multisensory visual-auditory object recognition in humans: a high-density electrical mapping study", Cereb. Cortex Vol 14, 452465. [Crossref]
43. Mossbridge J. A., Grabowecky M., Suzuki S. (2011). "Changes in auditory frequency guide visual-spatial attention", Cognition Vol 121, 133139. [Crossref]
44. Naito T., Kaneoke Y., Osaka N., Kakigi R. (2000). "Asymmetry of the human visual field in magnetic response to apparent motion", Brain Res. Vol 865, 221226. [Crossref]
45. Oltman P. K., Raskin E., Witkin H. A. (1971). Group Embedded Figures Test. Consulting Psychologists Press, Palo Alto, CA, USA.
46. Parise C. V., Spence C. (2008). "Synesthetic congruency modulates the temporal ventriloquism effect", Neurosci. Lett. Vol 442, 257261. [Crossref]
47. Parise C. V., Spence C. (2009). "‘When birds of a feather flock together’: synesthetic correspondences modulate audiovisual integration in non-synesthetes", PLoS One Vol 4, e5664. DOI:. [Crossref]
48. Parise C. V., Spence C. (2012). "Audiovisual crossmodal correspondences and sound symbolism: an IAT study", Exp. Brain Res. Vol 220, 319333. [Crossref]
49. Pelli D. G. (1997). "The VideoToolbox software for visual psychophysics: transforming numbers into movies", Spat. Vis. Vol 10, 437442. [Crossref]
50. Petersik J. T., Rice C. M. (2008). "Spatial correspondence and relation correspondence: grouping factors that influence perception of the Ternus display", Perception Vol 37, 725739. [Crossref]
51. Previc F. H. (1990). "Functional specialization in the lower and upper visual fields in humans: its ecological origins and neurophysiological implications", Behav. Brain Sci. Vol 13, 519575. [Crossref]
52. Previc F. H., Blume J. L. (1993). "Visual search asymmetries in three-dimensional space", Vis. Res. Vol 33, 26972704. [Crossref]
53. Previc F. H., Breitmeyer B. G., Weinstein L. F. (1995). "Discriminability of random-dot stereograms in three-dimensional space", Int. J. Neurosci. Vol 80, 247253. [Crossref]
54. Rader C. M., Tellegen A. (1987). "An investigation of synesthesia", J. Pers. Soc. Psychol. Vol 52, 981987. [Crossref]
55. Raymond J. E. (1994). "Directional anisotropy of motion sensitivity across the visual field", Vis. Res. Vol 34, 10291037. [Crossref]
56. Rayner S., Riding R. (2002). Cognitive Styles and Learning Strategies. David Fulton, London, UK.
57. Riding R. J., Al-Salih N. (2000). "Cognitive style and motor skills and sports performance", Educ. Stud. Vol 26, 1932. [Crossref]
58. Rubin N., Nakayama K., Shapley R. (1996). "Enhanced perception of illusory contours in the lower versus upper visual hemifields", Science Vol 271, 651653. [Crossref]
59. Shi Z., Chen L., Muller H. J. (2010). "Auditory temporal modulation of the visual Ternus effect: the influence of time interval", Exp. Brain Res. Vol 203, 723735. [Crossref]
60. Spence C. (2011). "Crossmodal correspondences: a tutorial review", Atten. Percept. Psychophys. Vol 73, 971995. [Crossref]
61. Spence C., Driver J. (2004). Crossmodal Space and Crossmodal Attention. Oxford University Press, Oxforsd, UK. [Crossref]
62. Sternberg R. J., Grigorenko E. L. (1997). "Are cognitive styles still in style", Am. Psychol. Vol 52, 700712. [Crossref]
63. Sweeny T. D., Guzman-Martinez E., Ortega L., Grabowecky M., Suzuki S. (2012). "Sounds exaggerate visual shape", Cognition Vol 124, 194200. [Crossref]
64. Talsma D., Senkowski D., Soto-Faraco S., Woldorff M. G. (2010). "The multifaceted interplay between attention and multisensory integration", Trends Cogn. Sci. Vol 14, 400410. [Crossref]
65. Ternus J. (1926). "Experimentelle Untersuchungen über phänomenale Identität", Psychol.e Forsch. Vol 7, 81136. (English translation as “The problem of phenomenal identity”, in: A Source Book of Gestalt Psychology, W. D. Ellis (Ed.), pp. 149–160, 1938, Routledge and Kegan Paul, London). [Crossref]
66. Treutwein B., Strasburger H. (1999). "Fitting the psychometric function", Percept. Psychophys. Vol 61, 87106. [Crossref]
67. Van Atteveldt N., Formisano E., Goebel R., Blomert L. (2004). "Integration of letters and speech sounds in the human brain", Neuron Vol 43, 271282. [Crossref]
68. Wang Q., Bao M., Chen L. (2014). "The role of spatiotemporal and spectral cues in segregating short sound events: evidence from auditory Ternus display", Exp. Brain Res. Vol 232, 273282. [Crossref]
69. Wang Q., Guo L., Bao M., Chen L. (2015). "Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory", Front. Psychol. Vol 6, 564. DOI:.
70. White B. W. (1954). "Visual and auditory closure", J. Exp. Psychol. Vol 48, 234240. [Crossref]
71. Witkin H. A., Goodenough D. R. (1977). "Field dependence and interpersonal behavior", Psychol. Bull. Vol 84, 661689. [Crossref]
72. Witkin H. A., Birnbaum J., Lomonaco S., Lehr S., Herman J. L. (1968). "Cognitive patterning in congenitally totally blind children", Child Dev. Vol 39, 767786. [Crossref]
73. Witkin H. A., Moore C. A., Goodenough D. R., Cox P. W. (1975). "Field-dependent and field-independent cognitive styles and their educational implications", ETS Res. Bull. Series Vol 1975(2), 164. [Crossref]
74. Xie J., Zhang H. (1988). Cognitive Style: Experimental Study on a Personality Dimension. Beijing Normal University Press, Beijing, P.R. China.
75. Yan J. H. (2010). "Cognitive styles affect choice response time and accuracy", Pers. Indiv. Diff. Vol 48, 747751. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation