Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Cue Integration for Continuous and Categorical Dimensions by Synesthetes

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

For synesthetes, sensory or cognitive stimuli induce the perception of an additional sensory or cognitive stimulus. Grapheme–color synesthetes, for instance, consciously and consistently experience particular colors (e.g., fluorescent pink) when perceiving letters (e.g., u). As a phenomenon involving multiple stimuli within or across modalities, researchers have posited that synesthetes may integrate sensory cues differently than non-synesthetes. However, findings to date present mixed results concerning this hypothesis, with researchers reporting enhanced, depressed, or normal sensory integration for synesthetes. In this study we quantitatively evaluated the multisensory integration process of synesthetes and non-synesthetes using Bayesian principles, rather than employing multisensory illusions, to make inferences about the sensory integration process. In two studies we investigated synesthetes’ sensory integration by comparing human behavior to that of an ideal observer. We found that synesthetes integrated cues for both continuous and categorical dimensions in a statistically optimal manner, matching the sensory integration behavior of controls. These findings suggest that synesthetes and controls utilize similar cue integration mechanisms, despite differences in how they perceive unimodal stimuli.

Affiliations: 1: 1Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA ; 2: 2Department of Psychology, Hamilton College, Clinton, NY, USA

*To whom correspondence should be addressed. E-mail:

Full text loading...


Data & Media loading...

1. Ahissar M., Hochstein S. (2004). "The reverse hierarchy theory of visual perceptual learning", Trends Cogn. Sci. Vol 8, 457464. [Crossref]
2. Bankieris K., Bejjanki V. R., Aslin R. (subm.). Sensory cue-combination in the context of newly learned categories.
3. Bargary G., Mitchell K. J. (2008). "Synaesthesia and cortical connectivity", Trends Neurosci. Vol 31, 335342. [Crossref]
4. Bejjanki V. R., Clayards M., Knill D. C., Aslin R. N. (2011). "Cue integration in categorical tasks: insights from audio-visual speech perception", PLoS One Vol 6, e19812. DOI:. [Crossref]
5. Brang D., Williams L. E., Ramachandran V. S. (2012). "Grapheme–color synesthetes show enhanced crossmodal processing between auditory and visual modalities", Cortex Vol 48(5), 630637. [Crossref]
6. Calkins M. W. (1893). "A statistical study of pseudochromesthesia and of mental forms", Am. J. Psychol. Vol 5, 439466. [Crossref]
7. Claparede E. (1903). "Persistance de l’audition colorée", C. R. Seances Soc. Biol. Fil. Vol 55, 12571259.
8. Clayards M., Tanenhaus M. K., Aslin R. N., Jacobs R. A. (2008). "Perception of speech reflects optimal use of probabilistic speech cues", Cognition Vol 108, 804809. [Crossref]
9. Day S. (2005). "Some demographic and socio-cultural aspects of synesthesia", in: Synesthesia: Perspectives From Cognitive Neuroscience, Robertson L. C., Sagiv N. (Eds), pp.  1133. Oxford University Press, New York, NY, USA.
10. Day S. (2009). "Types of synesthesia", in: Synesthesia. Retrieved from
11. Eagleman D. M., Kagan A. D., Nelson S. S., Sagaram D., Sarma A. K. (2007). "A standardized test battery for the study of synesthesia", J. Neurosci. Meth. Vol 159, 139145. [Crossref]
12. Ernst M. O., Banks M. S. (2002). "Humans integrate visual and haptic information in a statistically optimal fashion", Nature Vol 415(6870), 429433. [Crossref]
13. Feldman N. H., Griffiths T. L., Morgan J. L. (2009). "The influence of categories on perception: explaining the perceptual magnet effect as optimal statistical inference", Psychol. Rev. Vol 116, 752782. [Crossref]
14. Grossenbacher P. G., Lovelace C. T. (2001). "Mechanisms of synesthesia: cognitive and physiological constraints", Trends Cogn. Sci. Vol 5, 3641. [Crossref]
15. Hänggi J., Wotruba D., Jäncke L. (2011). "Globally altered structural brain network topology in grapheme-color synesthesia", J. Neurosci. Vol 31, 58165828. [Crossref]
16. Hershenson M. (1962). "Reaction time as a measure of intersensory facilitation", J. Exp. Psychol. Vol 63, 289293. [Crossref]
17. Hillis J. M., Ernst M. O., Banks M. S., Landy M. S. (2002). "Combining sensory information: mandatory fusion within, but not between, senses", Science Vol 298(5598), 16271630. [Crossref]
18. Hubbard E. M., Brang D., Ramachandran V. S. (2011). "The cross-activation theory at 10", J. Neuropsychol. Vol 5, 152177. [Crossref]
19. Hupé J. M., Dojat M. (2015). "A critical review of the neuroimaging literature on synesthesia", Front. Hum. Neurosci. Vol 9, 103. DOI:.
20. Jacobs R. A., Fine I. (1999). "Experience-dependent integration of texture and motion cues to depth", Vis. Res. Vol 39, 40624075. [Crossref]
21. Jäncke L., Beeli G., Eulig C., Hänggi J. (2009). "The neuroanatomy of grapheme–color synesthesia", Eur. J. Neurosci. Vol 29, 12871293. [Crossref]
22. Jewanski J., Day S., Ward J. (2009). "A colorful albino: the first documented case of synaesthesia, by Georg Tobias Ludwig Sachs in 1812", J. Hist. Neurosci. Vol 18, 293303. [Crossref]
23. Körding K. P., Wolpert D. M. (2004). "Bayesian integration in sensorimotor learning", Nature Vol 427(6971), 244247. [Crossref]
24. Körding K. P., Beierholm U., Ma W. J., Quartz S., Tenenbaum J. B., Shams L. (2007). "Causal inference in multisensory perception", PLoS One Vol 2, e943. DOI:. [Crossref]
25. Laurienti P. J., Burdette J. H., Maldjian J. A., Wallace M. T. (2006). "Enhanced multisensory integration in older adults", Neurobiol. Aging Vol 27, 11551163. [Crossref]
26. Michel M. M., Jacobs R. A. (2008). "Learning optimal integration of arbitrary features in a perceptual discrimination task", J. Vis. Vol 8(3), 116. DOI:.
27. Miller J. (1982). "Divided attention: evidence for coactivation with redundant signals", Cogn. Psychol. Vol 14, 247279. [Crossref]
28. Muir D. W., Clifton R. K., Clarkson M. G. (1989). "The development of a human auditory localization response: a U-shaped function", Can. J. Psychol. Vol 43, 199216. [Crossref]
29. Neufeld J., Sinke C., Zedler M., Emrich H. M., Szycik G. R. (2012). "Reduced audio–visual integration in synaesthetes indicated by the double-flash illusion", Brain Res. Vol 1473, 7886. [Crossref]
30. O’Hanlon E., Newell F. N., Mitchell K. J. (2013). "Combined structural and functional imaging reveals cortical deactivations in grapheme–color synaesthesia", Front. Psychol. Vol 4, 755. DOI:.
31. Oruç I., Maloney L. T., Landy M. S. (2003). "Weighted linear cue combination with possibly correlated error", Vis. Res. Vol 43, 24512468. [Crossref]
32. Ramachandran V., Hubbard E. M. (2001). "Synaesthesia: a window into perception, thought and language", J. Consc. Stud. Vol 8, 334.
33. Rouw R., Scholte H. S. (2007). "Increased structural connectivity in grapheme-color synesthesia", Nat. Neurosci. Vol 10, 792797. [Crossref]
34. Rouw R., Scholte H. S. (2010). "Neural basis of individual differences in synesthetic experiences", J. Neurosci. Vol 30, 62056213. [Crossref]
35. Rouw R., Scholte H. S., Colizoli O. (2011). "Brain areas involved in synaesthesia: a review", J. Neuropsychol. Vol 5, 214242. [Crossref]
36. Shams L., Kamitani Y., Shimojo S. (2000). "Illusions: what you see is what you hear", Nature Vol 408(6814), 788. [Crossref]
37. Sinke C., Neufeld J., Zedler M., Emrich H. M., Bleich S., Münte T. F., Szycik G. R. (2012). "Reduced audiovisual integration in synesthesia–evidence from bimodal speech perception", J. Neuropsychol. Vol 8, 94106. [Crossref]
38. Tomson S. N., Narayan M., Allen G. I., Eagleman D. M. (2013). "Neural networks of colored sequence synesthesia", J. Neurosci. Vol 33, 1409814106. [Crossref]
39. Van Beers R. J., Sittig A. C., Denier J. A. N. J. (1999). "Integration of proprioceptive and visual position-information: an experimentally supported model", J. Neurophysiol. Vol 81, 13551364.
40. Weiss P. H., Fink G. R. (2009). "Grapheme-colour synaesthetes show increased grey matter volumes of parietal and fusiform cortex", Brain Vol 132, 6570. [Crossref]
41. Whittingham K. M., McDonald J. S., Clifford C. W. (2014). "Synesthetes show normal sound-induced flash fission and fusion illusions", Vis. Res. Vol 105, 19. [Crossref]
42. Wichmann F. A., Hill N. J. (2001). "The psychometric function: I. Fitting, sampling, and goodness of fit", Percept Psychophys. Vol 63, 12931313. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation