Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Sound Properties Associated With Equiluminant Colours

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

There is a widespread tendency to associate certain properties of sound with those of colour (e.g., higher pitches with lighter colours). Yet it is an open question how sound influences chroma or hue when properly controlling for lightness. To examine this, we asked participants to adjust physically equiluminant colours until they ‘went best’ with certain sounds. For pure tones, complex sine waves and vocal timbres, increases in frequency were associated with increases in chroma. Increasing the loudness of pure tones also increased chroma. Hue associations varied depending on the type of stimuli. In stimuli that involved only limited bands of frequencies (pure tones, vocal timbres), frequency correlated with hue, such that low frequencies gave blue hues and progressed to yellow hues at 800 Hz. Increasing the loudness of a pure tone was also associated with a shift from blue to yellow. However, for complex sounds that share the same bandwidth of frequencies (100–3200 Hz) but that vary in terms of which frequencies have the most power, all stimuli were associated with yellow hues. This suggests that the presence of high frequencies (above 800 Hz) consistently yields yellow hues. Overall we conclude that while pitch–chroma associations appear to flexibly re-apply themselves across a variety of contexts, frequencies above 800 Hz appear to produce yellow hues irrespective of context. These findings reveal new sound–colour correspondences previously obscured through not controlling for lightness. Findings are discussed in relation to understanding the underlying rules of cross-modal correspondences, synaesthesia, and optimising the sensory substitution of visual information through sound.

Affiliations: 1: 1School of Psychology, University of Sussex, Brighton, UK ; 2: 2Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK ; 3: 3Allgemeine Psychologie, Justus-Liebig-Universität Gießen, Gießen, Germany

*To whom correspondence should be addressed. E-mail:
Loading data from figshare Loading data from figshare

Full text loading...


Data & Media loading...

1. Afra P., Funke M., Matsuo F. (2009). "Acquired auditory-visual synesthesia: a window to early cross-modal sensory interactions", Psychol. Res. Behav. Manag. Vol 2, 3137. [Crossref]
2. Álvaro L., Moreira H., Lillo J., Franklin A. (2015). "Color preference in red–green dichromats", Proc. Natl Acad Sci. Vol 112, 93169321. [Crossref]
3. Ayama M., Ikeda M. (1998). "Brightness-to-luminance ratio of colored light in the entire chromaticity diagram", Color Res. Appl. Vol 23, 274287. [Crossref]
4. Batschelet E. (1981). Circular Statistics in Biology. Academic Press, London, UK.
5. Berens P. (2009). "CircStat: a MATLAB toolbox for circular statistics", J. Stat. Softw. Vol 31, 121.
6. Bien N., Ten Oever S., Goebel R., Sack A. T. (2012). "The sound of size: crossmodal binding in pitch-size synesthesia: a combined TMS, EEG and psychophysics study", Neuroimage Vol 59, 663672. [Crossref]
7. Boersma P., Weenink D. (2012). Praat: doing phonetics by computer. Retrieved from
8. Bond B., Stevens S. (1969). "Cross-modality matching of brightness to loudness by 5-year-olds", Percept. Psychophys. Vol 6, 337339. [Crossref]
9. Braaten R. (1993). Synesthetic correspondence between visual location and auditory pitch in infants. Paper presented at the 34th Annual Meeting of the Psychonomic Society, Washington, DC, USA.
10. Brainard D. H. (1997). "The psychophysics toolbox", Spat. Vis. Vol 10, 433436. [Crossref]
11. Cohen Kadosh R., Terhune D. B. (2012). "Redefining synaesthesia?" Br. J. Psychol. Vol 103, 2023. [Crossref]
12. Deroy O., Spence C. (2013). "Why we are not all synesthetes (not even weakly so)", Psychonom. Bull. Rev. Vol 20, 643664. [Crossref]
13. Deroy O., Fasiello I., Hayward V., Auvray M. (2016). "Differentiated audio-tactile correspondences in sighted and blind individuals", J. Exp. Psychol. Hum. Percept. Perform. Vol 42, 12041214. [Crossref]
14. Dolscheid S., Shayan S., Majid A., Casasanto D. (2013). "The thickness of musical pitch psychophysical evidence for linguistic relativity", Psychol. Sci. Vol 24, 613621. [Crossref]
15. Eagleman D. M. (2012). "Synaesthesia in its protean guises", Br. J. Psychol. Vol 103, 1619. [Crossref]
16. Esterman M., Verstynen T., Ivry R. B., Robertson L. C. (2006). "Coming unbound: disrupting automatic integration of synesthetic color and graphemes by transcranial magnetic stimulation of the right parietal lobe", J. Cogn. Neurosci. Vol 18, 15701576. [Crossref]
17. Evans K. K., Treisman A. (2010). "Natural cross-modal mappings between visual and auditory features", J. Vis. Vol 10, 6. DOI:.
18. Fairchild M. D. (1998). Color Appearance Models. Addison Wesley Longman, Reading, MA, USA.
19. Fisher R. A. (1921). "On the ‘probable error’ of a coefficient of correlation deduced from a small sample", Metron Vol 1, 332.
20. Fitch W. T. (1997). "Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques", J. Acoust. Soc. Am. Vol 102, 12131222. [Crossref]
21. Fletcher H., Munson W. A. (1933). "Loudness, its definition, measurement and calculation", Bell Syst. Techn. J. Vol 12, 377430. [Crossref]
22. Forder L., He X., Witzel C., Franklin A. (2014). "Speakers of different colour lexicons differ only in post-perceptual processing of colour", Perception (ECVP Abstract Suppl.) Vol 43, 33.
23. Fryer L., Freeman J., Pring L. (2014). "Touching words is not enough: how visual experience influences haptic–auditory associations in the ‘Bouba–Kiki’ effect", Cognition Vol 132, 164173. [Crossref]
24. Giannakis K. (2001). Sound mosaics: a graphical user interface for sound synthesis based on audio-visual associations. Doctoral dissertation, Middlesex University, UK. Retrieved from
25. Goodyear B. G., Menon R. S. (1998). "Effect of luminance contrast on BOLD fMRI response in human primary visual areas", J. Neurophysiol. Vol 79, 22042207.
26. Hamilton-Fletcher G., Ward J. (2013). "Representing colour through hearing and touch in sensory substitution devices", Multisens. Res. Vol 26, 503532. [Crossref]
27. Hamilton-Fletcher G., Wright T. D., Ward J. (2016a). "Cross-modal correspondences enhance performance on a colour-to-sound sensory substitution device", Multisens. Res. Vol 29, 337363. [Crossref]
28. Hamilton-Fletcher G., Mengucci M., Medeiros F. (2016b). Synaestheatre: sonification of coloured objects in space, in: Proceedings of the International Conference on Live Interfaces 2016, Sussex, Brighton, UK, pp. 252–256.
29. Hamilton-Fletcher G., Obrist M., Watten P., Mengucci M., Ward J. (2016c). ‘I always wanted to see the night sky’: blind user preferences for sensory substitution devices, in: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, pp. 2162–2174.
30. Hupé J. M., Dojat M. (2015). "A critical review of the neuroimaging literature on synesthesia", Front. Hum. Neurosci. Vol 9, 103. DOI:.
31. ISO (2003). Acoustics — Normal Equal-Loudness Level Contours. International Organisation for Standardisation, Geneva, Switzerland.
32. Jewanski J. (2010). "Color-tone analogies: a systematic presentation of the principles of correspondence", in: Audiovisuology: Compendium. A Multidisciplinary Survey of Audiovisual Culture, Daniels D., Naumann S., Thoben J. (Eds), pp.  338347. König, Köln, Germany.
33. Jonas C., Spiller M. J., Hibbard P. (in press). Summation of visual attributes in auditory-visual crossmodal correspondences, Psychonom. Bull. Rev.
34. Ludwig V. U., Simner J. (2013). "What colour does that feel? Tactile-visual mapping and the development of cross-modality", Cortex Vol 49, 10891099. [Crossref]
35. Ludwig V. U., Adachi I., Matsuzawa T. (2011). "Visuoauditory mappings between high luminance and high pitch are shared by chimpanzees (Pan troglodytes) and humans", Proc. Natl. Acad. Sci. Vol 108, 2066120665. [Crossref]
36. Marks L. E. (1974). "On associations of light and sound: the mediation of brightness, pitch, and loudness", Am. J. Psychol. Vol 87, 173188. [Crossref]
37. Marks L. E. (1987). "On cross-modal similarity: auditory-visual interactions in speeded discrimination", J. Exp. Psychol. Hum. Percept. Perform. Vol 13, 384394.
38. Martino G., Marks L. E. (1999). "Perceptual and linguistic interactions in speeded classification: tests of the semantic coding hypothesis", Perception Vol 28, 903923. [Crossref]
39. Melara R. D. (1989). "Dimensional interaction between color and pitch", J. Exp. Psychol. Hum. Percept. Perform. Vol 15, 6979. [Crossref]
40. Mondloch C. J., Maurer D. (2004). "Do small white balls squeak? Pitch-object correspondences in young children", Cogn. Affect. Behav. Neurosci. Vol 4, 133136. [Crossref]
41. Moos A., Smith R., Miller S. R., Simmons D. R. (2014). "Cross-modal associations in synaesthesia: vowel colours in the ear of the beholder", Iperception Vol 5, 132142.
42. Muggleton N., Tsakanikos E., Walsh V., Ward J. (2007). "Disruption of synaesthesia following TMS of the right posterior parietal cortex", Neuropsychologia Vol 45, 15821585. [Crossref]
43. Mulert C., Jäger L., Propp S., Karch S., Störmann S., Pogarell O., Möller H.-J., Hegerl U. (2005). "Sound level dependence of the primary auditory cortex: simultaneous measurement with 61-channel EEG and fMRI", Neuroimage Vol 28, 4958. [Crossref]
44. Nayatani Y. (1998). "A colorimetric explanation of the Helmholtz–Kohlrausch effect", Color Res. Appl. Vol 23, 374378. [Crossref]
45. Newton I. (1979 [1706]). Opticks: or a Treatise of the Reflections, Refractions, Inflections and Colours of Light. Courier Dover Publications, New York, NY, USA.
46. Novich S., Cheng S., Eagleman D. M. (2011). "Is synaesthesia one condition or many? A large-scale analysis reveals subgroups", J. Neuropsychol. Vol 5, 353371. [Crossref]
47. Orlandatou K. (2012). The role of pitch and timbre in the synaesthetic experience, in: Proceedings of the 12th International Conference on Music Perception and Cognition and the 8th Triennial Conference of the European Society for the Cognitive Sciences of Music, Thessaloniki, Greece, pp. 751–758.
48. Palmer S. E., Schloss K. B., Xu Z., Prado-León L. R. (2013). "Music–color associations are mediated by emotion", Proc. Natl Acad. Sci. USA Vol 110, 88368841. [Crossref]
49. Parise C. V., Knorre K., Ernst M. O. (2014). "Natural auditory scene statistics shapes human spatial hearing", Proc. Natl Acad Sci. USA Vol 111, 61046108. [Crossref]
50. Pelli D. G. (1997). "The VideoToolbox software for visual psychophysics: transforming numbers into movies", Spat. Vis. Vol 10, 437442. [Crossref]
51. Pridmore R. W. (2007). "Effects of luminance, wavelength and purity on the color attributes: brief review with new data and perspectives", Color Res. Appl. Vol 32, 208222. [Crossref]
52. Root R. T., Ross S. (1965). "Further validation of subjective scales for loudness and brightness by means of cross-modality matching", Am. J. Psychol. Vol 78, 285289. [Crossref]
53. Schloss K., Lai Y.-H., Witzel C. (2016). "Yellow is no happier than blue when lightness and chroma are controlled", J. Vis. Vol 16, 624. DOI:.
54. Sebba R. (1991). "Structural correspondence between music and color", Color Res. Appl. Vol 16, 8188. [Crossref]
55. Sharpe L. T., Stockman A., Jägle H., Nathans J. (1999). "Opsin genes, cone photopigments, color vision, and color blindness", in: Color Vision: from Genes to Perception, Gegenfurtner K. R., Sharpe L. T. (Eds), pp.  351. Cambridge University Press, Cambridge, UK.
56. Simner J. (2012a). "Defining synaesthesia", Br. J. Psychol. Vol 103, 115. [Crossref]
57. Simner J. (2012b). "Defining synaesthesia: a response to two excellent commentaries", Br. J. Psychol. Vol 103, 2427. [Crossref]
58. Simner J. (2013). "The ‘rules’ of synesthesia", in: Oxford Handbook of Synesthesia, Simner J., Hubbard E. (Eds), pp.  149164. Oxford University Press, Oxford, UK. [Crossref]
59. Simner J., Ludwig V. U. (2012). "The color of touch: a case of tactile-visual synaesthesia", Neurocase Vol 18, 167180. [Crossref]
60. Simner J., Mulvenna C., Sagiv N., Tsakanikos E., Witherby S. A., Fraser C., Scott K., Ward J. (2006). "Synaesthesia: the prevalence of atypical cross-modal experiences", Perception Vol 35, 10241033. [Crossref]
61. Simpson R. H., Quinn M., Ausubel D. P. (1956). "Synesthesia in children: association of colors with pure tone frequencies", J. Genet. Psychol. Vol 89, 95103. [Crossref]
62. Spence C. (2011). "Crossmodal correspondences: a tutorial review", Attent. Percept. Psychophys. Vol 73, 971995. [Crossref]
63. Spence C., Deroy O. (2012). "Crossmodal correspondences: innate or learned?" Iperception Vol 3, 316. DOI:.
64. Stevens J. C., Marks L. E. (1965). "Cross-modality matching of brightness and loudness", Proc. Natl Acad. Sci. USA Vol 54, 407411. [Crossref]
65. Thornley Head P. D. (2006). "Synaesthesia: pitch-colour isomorphism in RGB-space?" Cortex Vol 42, 164174. [Crossref]
66. Walker P. (2012). "Cross-sensory correspondences and cross talk between dimensions of connotative meaning: visual angularity is hard, high-pitched, and bright", Attent. Percept. Psychophys. Vol 74, 17921809. [Crossref]
67. Walker P., Bremner G., Mason U., Spring J., Mattock K., Slater A., Johnson S. (2010). "Preverbal infants’ sensitivity to synaesthetic cross-modality correspondences", Psychol. Sci. Vol 21, 2125. [Crossref]
68. Walsh V. (2003). "A theory of magnitude: common cortical metrics of time, space and quantity", Trends Cogn. Sci. Vol 7, 483488. [Crossref]
69. Ward J. (2013). "Synesthesia", Annu. Rev. Psychol. Vol 64, 4975. [Crossref]
70. Ward J., Meijer P. (2010). "Visual experiences in the blind induced by an auditory sensory substitution device", Consc. Cogn. Vol 19, 492500. [Crossref]
71. Ward J., Wright T. (2014). "Sensory substitution as an artificially acquired synaesthesia", Neurosci. Biobehav. Rev. Vol 41, 2635. [Crossref]
72. Ward J., Huckstep B., Tsakanikos E. (2006). "Sound–colour synaesthesia: to what extent does it use cross-modal mechanisms common to us all?" Cortex Vol 42, 264280. [Crossref]
73. Ward J., Moore S., Thompson-Lake D., Salih S., Beck B. (2008). "The aesthetic appeal of auditory — visual synaesthetic perceptions in people without synaesthesia", Perception Vol 37, 12851296. [Crossref]
74. Witthoft N., Winawer J. (2006). "Synesthetic colors determined by having colored refrigerator magnets in childhood", Cortex Vol 42, 175183. [Crossref]
75. Witthoft N., Winawer J., Eagleman D. M. (2015). "Prevalence of learned grapheme-color pairings in a large online sample of synesthetes", PloS One Vol 10, e0118996. DOI:. [Crossref]
76. Witzel C., Franklin A. (2014). "Do focal colors look particularly ‘colorful’?" J. Opt. Soc. Am. A Opt. Image Sci. Vis. Vol 31, A365A374. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation