Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Open Access Distributed Visual–Vestibular Processing in the Cerebral Cortex of Man and Macaque

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Distributed Visual–Vestibular Processing in the Cerebral Cortex of Man and Macaque

  • PDF
  • HTML
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

Recent advances in understanding the neurobiological underpinnings of visual–vestibular interactions underlying self-motion perception are reviewed with an emphasis on comparisons between the macaque and human brains. In both species, several distinct cortical regions have been identified that are active during both visual and vestibular stimulation and in some of these there is clear evidence for sensory integration. Several possible cross-species homologies between cortical regions are identified. A key feature of cortical organization is that the same information is apparently represented in multiple, anatomically diverse cortical regions, suggesting that information about self-motion is used for different purposes in different brain regions.

Affiliations: 1: 1Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, UK ; 2: 2Institute of Experimental Psychology, University of Regensburg, 93053 Regensburg, Germany ; 3: 3Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627, USA ; 4: 4Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA

*To whom correspondence should be addressed. E-mail: a.t.smith@rhul.ac.uk

Recent advances in understanding the neurobiological underpinnings of visual–vestibular interactions underlying self-motion perception are reviewed with an emphasis on comparisons between the macaque and human brains. In both species, several distinct cortical regions have been identified that are active during both visual and vestibular stimulation and in some of these there is clear evidence for sensory integration. Several possible cross-species homologies between cortical regions are identified. A key feature of cortical organization is that the same information is apparently represented in multiple, anatomically diverse cortical regions, suggesting that information about self-motion is used for different purposes in different brain regions.

Loading

Full text loading...

/deliver/journals/22134808/30/2/22134808_030_02_s001_text.html?itemId=/content/journals/10.1163/22134808-00002568&mimeType=html&fmt=ahah
/content/journals/10.1163/22134808-00002568
Loading

Data & Media loading...

1. Amano K., Wandell B. A., Dumoulin S. O. (2009). "Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex", J. Neurophysiol. Vol 102, 27042718. [Crossref]
2. Andersen R., Shenoy K., Snyder L., Bradley D., Crowell J. (1999). "The contributions of vestibular signals to the representations of space in the posterior parietal cortex", Ann. N. Y. Acad. Sci. Vol 871, 282292. [Crossref]
3. Anderson K. C., Siegel R. M. (1999). "Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey", J. Neurosci. Vol 19, 26812692.
4. Angelaki D. E., Cullen K. E. (2008). "Vestibular system: the many facets of a multimodal sense", Annu. Revi. Neurosci. Vol 31, 125150. [Crossref]
5. Angelaki D. E., Shaikh A., Green A., Dickman J. D. (2004). "Neurons compute internal models of the physical laws of motion", Nature Vol 430, 560564. [Crossref]
6. Angelaki D. E., Klier E. M., Snyder L. H. (2009). "A vestibular sensation: probabilistic approaches to spatial perception", Neuron Vol 64, 448462. [Crossref]
7. Antal A., Baudewig J., Paulus W., Dechent P. (2008). "The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion", Vis. Neurosci. Vol 25, 1726. [Crossref]
8. Avillac M., Denève S., Olivier E., Pouget A., Duhamel J.-R. (2005). "Reference frames for representing visual and tactile locations in parietal cortex", Nat. Neurosci. Vol 8, 941949. [Crossref]
9. Avillac M., Hamed S. B., Duhamel J.-R. (2007). "Multisensory integration in the ventral intraparietal area of the macaque monkey", J. Neurosci. Vol 27, 19221932. [Crossref]
10. Barnes G. (1995). "Adaptation in the oculomotor response to caloric irrigation and the merits of bithermal stimulation", Br. J. Audiol. Vol 29, 95106. [Crossref]
11. Beauchamp M. S., Lee K. E., Argall B. D., Martin A. (2004). "Integration of auditory and visual information about objects in superior temporal sulcus", Neuron Vol 41, 809823. [Crossref]
12. Beauchamp M. S., Yasar N. E., Frye R. E., Ro T. (2008). "Touch, sound and vision in human superior temporal sulcus", NeuroImage Vol 41, 10111020. [Crossref]
13. Bense S., Stephan T., Yousry T. A., Brandt T., Dieterich M. (2001). "Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI)", J. Neurophysiol. Vol 85, 886899.
14. Berman R. A., Colby C. L., Genovese C. R., Voyvodic J. T., Luna B., Thulborn K. R., Sweeney J. A. (1999). "Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study", Hum. Brain Mapp. Vol 8, 209225. [Crossref]
15. Billington J., Smith A. T. (2015). "Neural mechanisms for discounting head-roll-induced retinal motion", J. Neurosci. Vol 35, 48514856. [Crossref]
16. Boussaoud D., Ungerleider L. G., Desimone R. (1990). "Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior teemporal visual areas of the macaque", J. Comp. Neurol. Vol 296, 462495. [Crossref]
17. Brandt T., Bartenstein P., Janek A., Dieterich M. (1998). "Reciprocal inhibitory visual-vestibular interaction — visual motion stimulation deactivates the parieto-insular vestibular cortex", Brain Vol 121, 17491758. [Crossref]
18. Bremmer F. (2005). "Navigation in space — the role of the macaque ventral intraparietal area", J. Physiol. Vol 566, 2935. [Crossref]
19. Bremmer F., Schlack A., Shah N. J., Zafiris O., Kubischik M., Hoffmann K., Zilles K., Fink G. R. (2001). "Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys", Neuron Vol 29, 287296. [Crossref]
20. Bremmer F., Duhamel J. R., Hamed S. B., Graf W. (2002a). "Heading encoding in the macaque ventral intraparietal area (VIP)", Eur. J. Neurosci. Vol 16, 15541568. [Crossref]
21. Bremmer F., Klam F., Duhamel J. R., Hamed S. B., Graf W. (2002b). "Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP)", Eur. J. Neurosci. Vol 16, 15691586. [Crossref]
22. Bremmer F., Schlack A., Kaminiarz A., Hoffmann K. (2013). "Encoding of movement in near extrapersonal space in primate area VIP", Front. Behav. Neurosci. Vol 7, 8. DOI:. [Crossref]
23. Britten K. H. (1998). "Clustering of response selectivity in the medial superior temporal area of extrastriate cortex in the macaque monkey", Vis. Neurosci. Vol 15, 553558. [Crossref]
24. Britten K. H., Van Wezel R. J. A. (1998). "Electrical microstimulation of cortical area MST biases heading perception in monkeys", Nat. Neurosci. Vol 1, 5963. [Crossref]
25. Bruce C., Desimone R., Gross C. G. (1981). "Visual properties of neurons in a polysensory area in seperior temporal sulcus of the macaque", J. Neurophysiol. Vol 46, 369384.
26. Bucher S., Dieterich M., Weismann M., Weiss A., Zink R., Yousry T., Brandt T. (1998). "Cerebral functional magnetic resonance imaging of vestibular, auditory and nociceptive areas during gavanic stimulation", Ann. Neurol. Vol 44, 120125. [Crossref]
27. Butler J. S., Smith S. T., Campos J. L., Bülthoff H. H. (2010). "Bayesian integration of visual and vestibular signals for heading", J. Vis. Vol 10, 23. DOI:.
28. Cardin V., Smith A. T. (2010). "Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation", Cereb. Cortex Vol 20, 19641973. [Crossref]
29. Cardin V., Smith A. T. (2011). "Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion", J. Neurophysiol. Vol 106, 12401249. [Crossref]
30. Chen A., Gu Y., Takahashi K., Angelaki D. E., DeAngelis G. C. (2008). "Clustering of self-motion selectivity and visual response properties in macaque area MSTd", J. Neurophysiol. Vol 100, 26692683. [Crossref]
31. Chen A., DeAngelis G. C., Angelaki D. E. (2010). "Macaque parieto-insular vestibular cortex: responses to self-motion and optic flow", J. Neurosci. Vol 30, 30223042. [Crossref]
32. Chen A., DeAngelis G. C., Angelaki D. E. (2011a). "A comparison of vestibular spatiotemporal tuning in macaque parietoinsular vestibular cortex, ventral intraparietal area, and medial superior temporal area", J. Neurosci. Vol 31, 30823094. [Crossref]
33. Chen A., DeAngelis G. C., Angelaki D. E. (2011b). "Convergence of vestibular and visual self-motion signals in an area of the posterior Sylvian fissure", J. Neurosci. Vol 31, 1161711627. [Crossref]
34. Chen A., DeAngelis G. C., Angelaki D. E. (2011c). "Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex", J. Neurosci. Vol 31, 1203612052. [Crossref]
35. Chen A., DeAngelis G. C., Angelaki D. E. (2013a). "Functional specializations of the ventral intraparietal area for multisensory heading discrimination", J. Neurosci. Vol 33, 35673581. [Crossref]
36. Chen X., DeAngelis G. C., Angelaki D. E. (2013b). "Eye-centered representation of optic flow tuning in the ventral intraparietal area", J. Neurosci. Vol 33, 1857418582. [Crossref]
37. Chen X., DeAngelis G. C., Angelaki D. E. (2013c). "Diverse spatial reference frames of vestibular signals in parietal cortex", Neuron Vol 80, 13101321. [Crossref]
38. Chen A., DeAngelis G. C., Angelaki D. E. (2016). "Evidence for a causal contribution of macaque vestibular, but not intraparietal, cortex to heading perception", J. Neurosci. Vol 36, 37893798. [Crossref]
39. Chowdhury S. A., Takahashi K., DeAngelis G. C., Angelaki D. E. (2009). "Does the middle temporal area carry vestibular signals related to self-motion?" J. Neurosci. Vol 29, 1202012030. [Crossref]
40. Colby C., Gattas R., Olson R., Gross C. (1988). "Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study", J. Comp. Neurol. Vol 269, 392413. [Crossref]
41. Colby C. L., Duhamel J. R., Goldberg M. E. (1993). "Ventral intraparietal area of the macaque: anatomic location and visual response properties", J. Neurophysiol. Vol 69, 902914.
42. Corbetta M., Akbudak E., Conturo T. E., Snyder A. Z., Ollinger J. M., Drury H. A., Linenweber M. R., Petersen S. E., Raichle M. E., Van Essen D. C., Shulman G. L. (1998). "A common network of functional areas for attention and eye movements", Neuron Vol 21, 761773. [Crossref]
43. Cottereau B. R., Smith A. T., Rima S., Fize D., Héjja-Brichard Y., Renaud L., Lejards C., Vayssière N., Trotter Y., Durand J. B. (2017). "Processing of egomotion-consistent optic flow in the rhesus macaque cortex", Cereb. Cortex Vol 27, 330343.
44. Crowell J. A., Banks M. S. (1993). "Perceiving heading with different retinal regions and types of optic flow", Percept. Psychophys. Vol 53, 325337. [Crossref]
45. Cullen K. E. (2012). "The vestibular system: multimodal integration and encoding of self-motion for motor control", Trends Neurosci. Vol 35, 185196. [Crossref]
46. Dean H. L., Crowley J. C., Platt M. L. (2004). "Visual and saccade-related activity in macaque posterior cingulate cortex", J. Neurophysiol. Vol 92, 30563068. [Crossref]
47. Della-Justina H. M., Gamba H. R., Lukasova K., Nucci-da-Silva M. P., Winkler A. M. Jr, Amaro E. (2015). "Interaction of brain areas of visual and vestibular simultaneous activity with fMRI", Exp. Brain Res. Vol 233, 237252. [Crossref]
48. Desimone R., Ungerleider L. G. (1986). "Multiple visual areas in the caudal superior temporal sulcus of the macaque", J. Comp. Neurol. Vol 248, 164189. [Crossref]
49. Deutschländer A., Bense S., Stephan T., Schwaiger M., Brandt T., Dieterich M. (2002). "Sensory system interactions during simultaneous vestibular and visual stimulation in PET", Hum. Brain Mapp. Vol 16, 92103. [Crossref]
50. Dichgans J., Brandt T. (1978). "Visual-vestibular interaction: effects on self-motion perception and postural control", in: Handbook of Sensory Physiology, Vol. 8, Held R., Leibowitz H., Teuber H.-L. (Eds), pp.  755804. Springer, Berlin, Germany.
51. Dieterich M., Brandt T. (1995). "Vestibulo-ocular reflex", Curr. Opin. Neurol. Vol 8, 8388. [Crossref]
52. Dieterich M., Brandt T. (2015). "The bilateral central vestibular system: its pathways, functions, and disorders", Ann. N. Y. Acad. Sci. Vol 1343, 1026. [Crossref]
53. Dokka K., DeAngelis G. C., Angelaki D. E. (2015). "Multisensory integration of visual and vestibular signals improves heading discrimination in the presence of a moving object", J. Neurosci. Vol 35, 1359913607. [Crossref]
54. Duffy C. J. (1998). "MST neurons respond to optic flow and translational movement", J. Neurophysiol. Vol 80, 18161827.
55. Duffy C. J., Wurtz R. H. (1991). "Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli", J. Neurophysiol. Vol 65, 13291345.
56. Duffy C. J., Wurtz R. H. (1995). "Responses of monkey MST neurons to optic flow stimuli with shifted centers of motion", J. Neurosci. Vol 15, 51925208.
57. Dukelow S. P., DeSouza J. F. X., Culham J. C., Van den Berg A. V., Menon R. S., Vilis T. (2001). "Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements", J. Neurophysiol. Vol 86, 19912000.
58. Ernst M., Banks M. (2002). "Humans integrate visual and haptic information in a statistically optimal fashion", Nature Vol 415, 429433. [Crossref]
59. Fan R. H., Liu S., DeAngelis G. C., Angelaki D. E. (2015). "Heading tuning in macaque area V6", J. Neurosci. Vol 35, 1630316314. [Crossref]
60. Fasold O., von Brevern M., Kuhberg M., Ploner C. J., Villringer A., Lempert T., Wenzel R. (2002). "Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging", NeuroImage Vol 17, 13841393. [Crossref]
61. Fetsch C. R., Wang S., Gu Y., DeAngelis G. C., Angelaki D. E. (2007). "Spatial reference frames of visual, vestibular, and multimodal heading signals in the dorsal subdivision of the medial superior temporal area", J. Neurosci. Vol 27, 700712. [Crossref]
62. Fetsch C., Turner A., DeAngelis G., Angelaki D. (2009). "Dynamic reweighting of visual and vestibular cues during self-motion perception", J. Neurosci. Vol 29, 1560115612. [Crossref]
63. Fetsch C. R., Rajguru S. M., Karunaratne A., Gu Y., Angelaki D. E., DeAngelis G. C. (2010). "Spatiotemporal properties of vestibular responses in area MSTd", J. Neurophysiol. Vol 104, 15061522. [Crossref]
64. Fetsch C. R., Pouget A., DeAngelis G. C., Angelaki D. E. (2012). "Neural correlates of reliability–based cue weighting during multisensory integration", Nat. Neurosci. Vol 15, 146154. [Crossref]
65. Fetsch C. R., DeAngelis G. C., Angelaki D. E. (2013). "Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons", Nat. Rev. Neurosci. Vol 14, 429442. [Crossref]
66. Fitzpatrick R., Day B. (2004). "Probing the human vestibular system with galvanic stimulation", J. Appl. Physiol. Vol 96, 23012316. [Crossref]
67. Frank S. M., Baumann O., Mattingley J. B., Greenlee M. W. (2014). "Vestibular and visual responses in human posterior insular cortex", J. Neurophysiol. Vol 112, 24812491. [Crossref]
68. Frank S. M., Wirth A. M., Greenlee M. W. (2016a). "Visual-vestibular processing in the human Sylvian fissure", J. Neurophysiol. Vol 116, 263271. [Crossref]
69. Frank S. M., Sun L., Forster L., Tse P. U., Greenlee M. W. (2016b). "Cross-modal attention effects in the vestibular cortex during attentive tracking of moving objects", J. Neurosci. Vol 36, 1272012728. [Crossref]
70. Furlan M., Wann J. P., Smith A. T. (2014). "A representation of changing heading direction in human cortical areas pVIP and CSv", Cereb. Cortex Vol 24, 28482858. [Crossref]
71. Galletti C., Battaglini P. P., Fattori P. (1991). "Functional properties of neurons in the anterior bank of the parieto–occipital sulcus of the macaque monkey", Eur. J. Neurosci. Vol 3, 452461. [Crossref]
72. Galletti C., Fattori P., Battaglini P. P., Shipp S., Zeki S. (1996). "Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey", Eur. J. Neurosci. Vol 8, 3052. [Crossref]
73. Galletti C., Fattori P., Gamberini M., Kutz D. F. (1999). "The cortical visual area V6: brain location and visual topography", Eur. J. Neurosci. Vol 11, 39223936. [Crossref]
74. Gernandt B. (1949). "Responses of mammalian vestibular neurons to horizontal rotation and caloric stimulation", J. Neurophysiol. Vol 12, 173184.
75. Gibson J. J. (1950). The Perception of the Visual World. Houghton Mifflin, Boston, MA, USA.
76. Graziano M., Andersen R., Snowden R. (1994). "Tuning of MST neurons to spiral motions", J. Neurosci. Vol 14, 5467.
77. Gu Y., Watkins P. V., Angelaki D. E., DeAngelis G. C. (2006). "Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area", J. Neurosci. Vol 26, 7385. [Crossref]
78. Gu Y., DeAngelis G. C., Angelaki D. E. (2007). "A functional link between area MSTd and heading perception based on vestibular signals", Nat. Neurosci. Vol 10, 10381047. [Crossref]
79. Gu Y., Angelaki D. E., DeAngelis G. C. (2008). "Neural correlates of multisensory cue integration in macaque MSTd", Nat. Neurosci. Vol 11, 12011210. [Crossref]
80. Gu Y., Fetsch C. R., Adeyemo B., DeAngelis G. C., Angelaki D. E. (2010). "Decoding of MSTd population activity accounts for variations in the precision of heading perception", Neuron Vol 66, 596609. [Crossref]
81. Gu Y., DeAngelis G. C., Angelaki D. E. (2012). "Causal links between dorsal medial superior temporal area neurons and multisensory heading perception", J. Neurosci. Vol 32, 22992313. [Crossref]
82. Gu Y., Cheng Z., Yang L., DeAngelis G. C., Angelaki D. E. (2016). "Multisensory convergence of visual and vestibular heading cues in the pursuit area of the frontal eye field", Cereb. Cortex Vol 26, 37853801. [Crossref]
83. Guldin W., Grüsser O.-J. (1998). "Is there a vestibular cortex?" Trends Neurosci. Vol 21, 254259. [Crossref]
84. Guldin W. O., Akbarian S., Grüsser O.-J. (1992). "Cortico–cortical connections and cytoarchitectonics of the primate vestibular cortex: a study in squirrel monkeys (Saimiri sciureus)", J. Comp. Neurol. Vol 326, 375401. [Crossref]
85. Haller S., Fasler D., Ohlendorf S., Radue E. W., Greenlee M. W. (2008). "Neural activation associated with corrective saccades during tasks with fixation, pursuit and saccades", Exp. Brain Res. Vol 184, 8394. [Crossref]
86. Harris L. (1994). "Visual motion caused by movements of the eye, head and body", in: Visual Detection of Motion, Smith A. T., Snowden R. J. (Eds). Academic Press, London, UK and San Diego, CA, USA.
87. Hikosaka K., Iwai E., Saito H., Tanaka K. (1988). "Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey", J. Neurophysiol. Vol 60, 16151637.
88. Huk A. C., Dougherty R. F., Heeger D. J. (2002). "Retinotopy and functional subdivision of human areas MT and MST", J. Neurosci. Vol 22, 71957205.
89. Kim H., Pitkow X., Angelaki D., DeAngelis G. (2016). "A simple approach to ignoring irrelevant variables by population decoding based on multisensory neurons", J. Neurophysiol. Vol 116, 14491467. [Crossref]
90. Kimmig H., Greenlee M. W., Gondan M., Schira M., Kassubek J., Mergner T. (2001). "Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects", Exp. Brain Res. Vol 141, 184194. [Crossref]
91. Kimmig H., Ohlendorf S., Speck O., Sprenger A., Rutschmann R., Haller S., Greenlee M. W. (2008). "fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements", Neuropsychologia Vol 46, 22032213. [Crossref]
92. Kirsch V., Keeser D., Hergenroeder T., Erat O., Ertl-Wagner B., Brandt T., Dieterich M. (2016). "Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex", Brain Struct. Funct. Vol 221, 12911308. [Crossref]
93. Knill D., Pouget A. (2004). "The Bayesian brain: the role of uncertainty in neural coding and computation", Trends Neurosci. Vol 27, 712719. [Crossref]
94. Kolster H., Mandeville J. B., Arsenault J. T., Ekstrom L. B., Wald L. L., Vanduffel W. (2009). "Visual field map clusters in macaque extrastriate visual cortex", J. Neurosci. Vol 29, 70317039. [Crossref]
95. Kolster H., Peeters R., Orban G. A. (2010). "The retinotopic organization of the human middle temporal area mt/v5 and its cortical neighbors", J. Neurosci. Vol 30, 98019820. [Crossref]
96. Komatsu H., Wurtz R. H. (1988). "Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons", J. Neurophysiol. Vol 60, 580603.
97. Koyama M., Hasegawa I., Osada T., Adachi Y., Nakahara K., Miyashita Y. (2004). "Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans", Neuron Vol 41, 795807. [Crossref]
98. Lappe M., Bremmer F., Van den Berg A. V. (1999). "Perception of self-motion from visual flow", Trends Cogn. Sci. Vol 3, 329336. [Crossref]
99. Large I., Bridge H., Ahmed B., Clare S., Kolasinski J., Lam W. W., Miller K. L., Dyrby T. B., Parker A. J., Smith J. E., Daubney G., Sallet J., Bell A. H., Krug K. (2016). "Individual differences in the alignment of structural and functional markers of the V5/MT complex in primates", Cereb. Cortex Vol 26, 39283944. [Crossref]
100. Laurens J., Liu S., Yu X.-J., Chan R., Dickman D., DeAngelis G. C., Angelaki D. E. (2017). "Transformation of spatiotemporal dynamics in the macaque vestibular system from otolith afferents to cortex", Elife Vol 6, e20787. DOI:. [Crossref]
101. Liu S., Angelaki D. (2009). "Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception", J. Neurosci. Vol 29, 89368945. [Crossref]
102. Lobel E., Kleine J., Le Bihan D., Leroy-Willig A., Berthoz A. (1998). "Functional MRI of galvanic vestibular stimulation", J. Neurophysiol. Vol 80, 26992709.
103. Lopez C., Blanke O. (2011). "The thalamocortical vestibular system in animals and humans", Brain Res. Rev. Vol 67, 119146. [Crossref]
104. Luna B., Thulborn K., Strojwas M., McCurtain B., Berman R., Genovese C., Sweeney J. (1998). "Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study", Cereb. Cortex Vol 8, 4047. [Crossref]
105. Mineault P. J., Khawaja F. A., Butts D. A., Pack C. C. (2012). "Hierarchical processing of complex motion along the primate dorsal visual pathway", Proc. Natl. Acad. Sci. USA Vol 109, E972E980. [Crossref]
106. Morgan M. L., DeAngelis G. C., Angelaki D. E. (2008). "Multisensory integration in macaque visual cortex depends on cue reliability", Neuron Vol 59, 662673. [Crossref]
107. Ohshiro T., Angelaki D. E., DeAngelis G. C. (2011). "A normalization model of multisensory integration", Nat. Neurosci. Vol 14, 775782. [Crossref]
108. Olson C., Musil S., Goldberg M. (1993). "Posterior cingulate cortex and visuospatial cognition: properties of single neurons in the behaving monkey", in: Neurobiolgy of Cingulate Cortex and Limbic Thalamus: a Comprehesive Handbook, Vogt B. A., Gabriels M. (Eds), pp.  366380. Birkhauser, Boston, MA, USA. [Crossref]
109. Orban G. A., Claeys K., Nelissen K., Smans R., Sunaert S., Todd J. T., Wardak C., Durand J. B., Vanduffel W. (2006). "Mapping the parietal cortex of human and non-human primates", Neuropsychologia Vol 44, 26472667. [Crossref]
110. Page W. K., Duffy C. J. (1999). "MST neuronal responses to heading direction during pursuit eye movements", J. Neurophysiol. Vol 81, 596610.
111. Page W., Duffy C. (2003). "Heading representation in MST: sensory interactions and population encoding", J. Neurophysiol. Vol 89, 19942013. [Crossref]
112. Petit L., Clark V. P., Ingeholm J., Haxby J. V. (1997). "Dissociation of saccade–related and pursuit–related activation in human frontal eye fields as revealed by fMRI", J. Neurophysiol. Vol 77, 33863390.
113. Pitzalis S., Galletti C., Huang R.-S., Patria F., Committeri G., Galati G., Fattori P., Sereno M. I. (2006). "Wide-field retinotopy defines human cortical visual area V6", J. Neurosci. Vol 26, 79627963. [Crossref]
114. Pitzalis S., Sereno M. I., Committeri G., Fattori P., Galati G., Patria F., Galletti C. (2010). "Human V6: the medial motion area", Cereb. Cortex Vol 20, 411424. [Crossref]
115. Pitzalis S., Sdoia S., Bultrini A., Committeri G., Di Russo F., Fattori P., Galletti C., Galati G. (2013a). "Selectivity to translational egomotion in human brain motion areas", PLoS One Vol 8, e60241. DOI:. [Crossref]
116. Pitzalis S., Fattori P., Galletti C. (2013b). "The functional role of the medial motion area V6", Front. Behav. Neurosci. Vol 6, 91. DOI:. [Crossref]
117. Pitzalis S., Sereno M. I., Committeri G., Fattori P., Galati G., Tosoni A., Galletti C. (2013c). "The human homologue of macaque area V6A", NeuroImage Vol 82, 517530. [Crossref]
118. Quinlan D. J., Culham J. C. (2007). "fMRI reveals a preference for near viewing in the human parieto-occipital cortex", NeuroImage Vol 36, 167187. [Crossref]
119. Roberts R. E., Ahmad H., Arshad Q., Patel M., Dima D., Leech R., Seemungal B. M., Sharp D. J., Bronstein A. M. (in press). Functional neuroimaging of visuo-vestibular interaction, Brain Struct. Funct. DOI:.
120. Royden C., Hildreth E. (1996). "Human heading judgments in the presence of moving objects", Percept. Psychophys. Vol 58, 836856. [Crossref]
121. Saito H.-A., Yukie M., Tanaka K., Hikosaka K., Fukada Y., Iwai E. (1986). "Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey", J. Neurosci. Vol 6, 145157.
122. Schaafsma S. J., Duysens J. (1996). "Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns", J. Neurophysiol. Vol 76, 40564068.
123. Schlack A., Hoffmann K. P., Bremmer F. (2002). "Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP)", Eur. J. Neurosci. Vol 16, 18771886. [Crossref]
124. Schlack A., Sterbing-D’Angelo S. J., Hartung K., Hoffmann K.-P., Bremmer F. (2005). "Multisensory space representations in the macaque ventral intraparietal area", J. Neurosci. Vol 25, 46164625. [Crossref]
125. Smith A. T., Wall M. B., Thilo K. V. (2012). "Vestibular inputs to human motion-sensitive visual cortex", Cereb. Cortex Vol 22, 10681077. [Crossref]
126. Smith A. T., Beer A. L., Furlan M., Mars R. B. (in press). Connectivity of the cingulate sulcus visual area (CSv) in the human cerebral cortex, Cereb. Cortex. DOI:.
127. Stephan T., Deutschländer A., Nolte A., Schneider E., Wiesmann M., Brandt T., Dieterich M. (2005). "Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies", NeuroImage Vol 26, 721732. [Crossref]
128. Sunaert S., VanHecke P., Marchal G., Orban G. A. (1999). "Motion–responsive regions of the human brain", Exp. Brain Res. Vol 127, 355370. [Crossref]
129. Sunkara A., DeAngelis G. C., Angelaki D. E. (2016). "Joint representation of translational and rotational components of optic flow in parietal cortex", Proc. Natl. Acad. Sci. USA Vol 113, 50775082. [Crossref]
130. Suzuki M., Kitano H., Ito R., Kitanishi T., Yazawa Y., Ogawa T., Shiino A., Kitajima K. (2001). "Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging", Cogn. Brain Res. Vol 12, 441449. [Crossref]
131. Swisher J. D., Halko M. A., Merabet L. B., McMains S. A., Somers D. C. (2007). "Visual topography of human intraparietal sulcus", J. Neurosci. Vol 27, 53265337. [Crossref]
132. Takahashi K., Gu Y., May P. J., Newlands S. D., DeAngelis G. C., Angelaki D. E. (2007). "Multimodal coding of three-dimensional rotation and translation in area MSTd: comparison of visual and vestibular selectivity", J. Neurosci. Vol 27, 97429768. [Crossref]
133. Tanabe J., Tregellas J., Miller D., Ross R. G., Freedman R. (2002). "Brain activation during smooth–pursuit eye movements", NeuroImage Vol 17, 13151324. [Crossref]
134. Tanaka K., Saito H. (1989). "Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey", J. Neurophysiol. Vol 62, 626641.
135. Tanaka K., Fukada Y., Saito H. (1989). "Underlying mechanisms of the reponse specificity of the expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey", J. Neurophysiol. Vol 62, 642656.
136. Telford L., Howard I. P., Ohmi M. (1995). "Heading judgments during active and passive self-motion", Exp. Brain Res. Vol 104, 502510. [Crossref]
137. Van Essen D., Drury H., Dickson J., Harwell J., Hanlon D., Anderson C. (2001). "An integrated software suite for surface–based analysis of visual cortex", J. Am. Med. Inform. Assoc. Vol 8, 443459. [Crossref]
138. von Holst E., Mittelstaedt H. (1950). "Das Reafferenzprinzip", Naturwissenschaften Vol 37, 464476. [Crossref]
139. Wall M. B., Smith A. T. (2008). "The representation of egomotion in the human brain", Curr. Biol. Vol 18, 191194. [Crossref]
140. Wall M. B., Lingnau A., Ashida H., Smith A. T. (2008). "Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation", Eur. J. Neurosci. Vol 27, 27472757. [Crossref]
141. Warren W. H., Hannon D. J. (1988). "Direction of self-motion is perceived from optical flow", Nature Vol 336, 162163. [Crossref]
142. Warren P. A., Rushton S. K. (2009). "Optic flow processing for the assessment of object movement during ego movement", Curr. Biol. Vol 19, 15551560. [Crossref]
143. Wirth A. M., Frank S. M., Beer A. L., Greenlee M. W. (subm.). White matter connections of the visual–vestibular cortex.
144. Yang Y., Liu S., Chowdhury S. A., DeAngelis G. C., Angelaki D. E. (2011). "Binocular disparity tuning and visual-vestibular congruency of multisensory neurons in macaque parietal cortex", J. Neurosci. Vol 31, 1790517916. [Crossref]
145. Zhang T., Britten K. H. (2010). "The responses of VIP neurons are sufficiently sensitive to support heading judgments", J. Neurophysiol. Vol 103, 18651873. [Crossref]
146. Zhang T., Heuer H. W., Britten K. H. (2004). "Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates", Neuron Vol 42, 9931001. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-00002568
Loading
Loading

Article metrics loading...

/content/journals/10.1163/22134808-00002568
2017-05-03
2017-11-17

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation