Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Individual Alpha Frequency Relates to the Sound-Induced Flash Illusion

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

Ongoing neural oscillations reflect fluctuations of cortical excitability. A growing body of research has underlined the role of neural oscillations for stimulus processing. Neural oscillations in the alpha band have gained special interest in electrophysiological research on perception. Recent studies proposed the idea that neural oscillations provide temporal windows in which sensory stimuli can be perceptually integrated. This also includes multisensory integration. In the current high-density EEG-study we examined the relationship between the individual alpha frequency (IAF) and cross-modal audiovisual integration in the sound-induced flash illusion (SIFI). In 26 human volunteers we found a negative correlation between the IAF and the SIFI illusion rate. Individuals with a lower IAF showed higher audiovisual illusions. Source analysis suggested an involvement of the visual cortex, especially the calcarine sulcus, for this relationship. Our findings corroborate the notion that the IAF affects the cross-modal integration of auditory on visual stimuli in the SIFI. We integrate our findings with recent observations on the relationship between audiovisual integration and neural oscillations and suggest a multifaceted influence of neural oscillations on multisensory processing.

Affiliations: 1: Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité — Universitätsmedizin Berlin, Grosse Hambuger Strasse 5-1, 10115 Berlin, Germany

*To whom correspondence should be addressed. E-mail: julian.keil@charite.de
Loading

Full text loading...

/content/journals/10.1163/22134808-00002572
Loading

Data & Media loading...

1. Ai L., Ro T. (2014). "The phase of prestimulus alpha oscillations affects tactile perception", J. Neurophysiol. Vol 111, 13001307. [Crossref]
2. Andersen T., Tiippana K., Sams M. (2004). "Factors influencing audiovisual fission and fusion illusions", Cogn. Brain Res. Vol 21, 301308. [Crossref]
3. Balz J., Keil J., Romero Y. R., Mekle R., Schubert F., Aydin S., Ittermann B., Gallinat J., Senkowski D. (2016). "GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion", NeuroImage Vol 125, 724730. [Crossref]
4. Baumgarten T. J., Schnitzler A., Lange J. (2015). "Beta oscillations define discrete perceptual cycles in the somatosensory domain", Proc. Natl Acad. Sci. USA Vol 112, 1218712192. [Crossref]
5. Busch N. A., Dubois J., Vanrullen R. (2009). "The phase of ongoing EEG oscillations predicts visual perception", J. Neurosci. Vol 29, 78697876. [Crossref]
6. Cecere R., Rees G., Romei V. (2015). "Individual differences in alpha frequency drive crossmodal illusory perception", Curr. Biol. Vol 25, 231235. [Crossref]
7. Cravo A. M., Santos K. M., Reyes M. B., Caetano M. S., Claessens P. M. E. (2015). "Visual causality judgments correlate with the phase of alpha oscillations", J. Cogn. Neurosci. Vol 83, 18.
8. Delorme A., Makeig S. (2004). "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis", J. Neurosci. Meth. Vol 134, 921. [Crossref]
9. Dugué L., Marque P., Vanrullen R. (2011). "The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception", J. Neurosci. Vol 31, 1188911893. [Crossref]
10. Fellinger R., Klimesch W., Gruber W., Freunberger R., Doppelmayr M. (2011). "Pre-stimulus alpha phase-alignment predicts P1-amplitude", Brain Res. Bull. Vol 85, 417423. [Crossref]
11. Foxe J. J., Snyder A. C. (2011). "The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention", Front. Psychol. Vol 2, 154. DOI:10.3389/fpsyg.2011.00154. [Crossref]
12. Frey J. N., Mainy N., Lachaux J. P., Muller N., Bertrand O., Weisz N. (2014). "Selective modulation of auditory cortical alpha activity in an audiovisual spatial attention task", J. Neurosci. Vol 34, 66346639. [Crossref]
13. Gips B., Van der Eerden J. P. J. M., Jensen O. (2016). "A biologically plausible mechanism for neuronal coding organized by the phase of alpha oscillations", Eur. J. Neurosci. Vol 44, 21472161. [Crossref]
14. Goldman R. I., Stern J. M., Engel J. Jr., Cohen M. S. (2002). "Simultaneous EEG and fMRI of the alpha rhythm", Neuroreport Vol 13, 24872492. [Crossref]
15. Haig A. R., Gordon E. (1998). "EEG alpha phase at stimulus onset significantly affects the amplitude of the P3 ERP component", Int. J. Neurosci. Vol 93, 101115. [Crossref]
16. Hanslmayr S., Aslan A., Staudigl T., Klimesch W., Herrmann C. S., Bäuml K.-H. (2007). "Prestimulus oscillations predict visual perception performance between and within subjects", NeuroImage Vol 37, 14651473. [Crossref]
17. Hartmann T., Schlee W., Weisz N. (2012). "It’s only in your head: expectancy of aversive auditory stimulation modulates stimulus-induced auditory cortical alpha desynchronization", NeuroImage Vol 60, 170178. [Crossref]
18. Herrmann C. S., Strüber D., Helfrich R. F., Engel A. K. (2015). "EEG oscillations: from correlation to causality", Int. J. Psychophysiol. Vol 103, 1221. [Crossref]
19. Isaacson J. S., Scanziani M. (2011). "How inhibition shapes cortical activity", Neuron Vol 72, 231243. [Crossref]
20. Jansen B. H., Brandt M. E. (1991). "The effect of the phase of prestimulus alpha activity on the averaged visual evoked response", Electroencephalogr. Clin. Neurophysiol. Vol 80, 241250. [Crossref]
21. Jensen O., Mazaheri A. (2010). "Shaping functional architecture by oscillatory alpha activity: gating by inhibition", Front. Hum. Neurosci. Vol 4, 186. DOI:10.3389/fnhum.2010.00186. [Crossref]
22. Jensen O., Bonnefond M., Vanrullen R. (2012). "An oscillatory mechanism for prioritizing salient unattended stimuli", Trends Cogn. Sci. Vol 16, 200206. [Crossref]
23. Jensen O., Gips B., Bergmann T. O., Bonnefond M. (2014). "Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing", Trends Neurosci. Vol 37, 357369. DOI:10.1016/j.tins.2014.04.001. [Crossref]
24. Jung T. P., Makeig S., Westerfield M., Townsend J., Courchesne E., Sejnowski T. J. (2000). "Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects", Clin. Neurophysiol. Vol 111, 17451758. [Crossref]
25. Keil J., Müller N., Hartmann T., Weisz N. (2014). "Prestimulus beta power and phase synchrony influence the sound-induced flash illusion", Cereb. Cortex Vol 24, 12781288. [Crossref]
26. Keil J., Pomper U., Senkowski D. (2016). "Distinct patterns of local oscillatory activity and functional connectivity underlie intersensory attention and temporal prediction", Cortex Vol 74, 277288. [Crossref]
27. Klimesch W. (1997). "EEG-alpha rhythms and memory processes", Int. J. Psychophysiol. Vol 26, 319340. [Crossref]
28. Klimesch W., Sauseng P., Hanslmayr S. (2007). "EEG alpha oscillations: the inhibition–timing hypothesis", Brain Res. Rev. Vol 53, 6388. [Crossref]
29. Lakatos P., Chen C.-M., O’Connell M. N., Mills A., Schroeder C. E. (2007). "Neuronal oscillations and multisensory interaction in primary auditory cortex", Neuron Vol 53, 279292. [Crossref]
30. Lange J., Oostenveld R., Fries P. (2013). "Reduced occipital alpha power indexes enhanced excitability rather than improved visual perception", J. Neurosci. Vol 33, 32123220. [Crossref]
31. Lange J., Keil J., Schnitzler A., Van Dijk H., Weisz N. (2014). "The role of alpha oscillations for illusory perception", Behav. Brain Res. Vol 271, 294301. [Crossref]
32. Laufs H., Kleinschmidt A., Beyerle A., Eger E., Salek-Haddadi A., Preibisch C., Krakow K. (2003). "EEG-correlated fMRI of human alpha activity", NeuroImage Vol 19, 14631476. [Crossref]
33. Leonardelli E., Braun C., Weisz N., Lithari C., Occelli V., Zampini M. (2015). "Prestimulus oscillatory alpha power and connectivity patterns predispose perceptual integration of an audio and a tactile stimulus", Hum. Brain Mapp. Vol 36, 34863498. [Crossref]
34. Lou B., Li Y., Philiastides M. G., Sajda P. (2014). "Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making", NeuroImage Vol 87, 242251. [Crossref]
35. Maris E., Oostenveld R. (2007). "Nonparametric statistical testing of EEG- and MEG-data", J. Neurosci. Meth. Vol 164, 177190. [Crossref]
36. Mathewson K. E., Gratton G., Fabiani M., Beck D. M., Ro T. (2009). "To see or not to see: prestimulus alpha phase predicts visual awareness", J. Neurosci. Vol 29, 27252732. [Crossref]
37. Moosmann M., Ritter P., Krastel I., Brink A., Thees S., Blankenburg F., Taskin B., Obrig H., Villringer A. (2003). "Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy", NeuroImage Vol 20, 145158. [Crossref]
38. Müller N., Weisz N. (2012). "Lateralized auditory cortical alpha band activity and interregional connectivity pattern reflect anticipation of target sounds", Cereb. Cortex Vol 22, 16041613. [Crossref]
39. Oostenveld R., Fries P., Maris E., Schoffelen J.-M. (2011). "FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data", Comput. Intell. Neurosci. Vol 2011, 156869. DOI:10.1155/2011/156869. [Crossref]
40. Palva S., Palva J. M. (2007). "New vistas for α-frequency band oscillations", Trends Neurosci. Vol 30, 150158. [Crossref]
41. Pascual-Marqui R. D. (2002). "Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details", Methods Find. Exp. Clin. Pharmacol. Vol 24(Suppl. D), 512.
42. Pomper U., Keil J., Foxe J. J., Senkowski D. (2015). "Intersensory selective attention and temporal orienting operate in parallel and are instantiated in spatially distinct sensory and motor cortices", Hum. Brain Mapp. Vol 36, 32463259. [Crossref]
43. Rihs T., Michel C., Thut G. (2009). "A bias for posterior α-band power suppression versus enhancement during shifting versus maintenance of spatial attention", NeuroImage Vol 44, 190199. [Crossref]
44. Romei V., Brodbeck V., Michel C., Amedi A., Pascual-Leone A., Thut G. (2008a). "Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas", Cereb. Cortex Vol 18, 20102018. [Crossref]
45. Romei V., Rihs T., Brodbeck V., Thut G. (2008b). "Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability", Neuroreport Vol 19, 203208. [Crossref]
46. Ruhnau P., Hauswald A., Weisz N. (2014). "Investigating ongoing brain oscillations and their influence on conscious perception — network states and the window to consciousness", Front. Psychol. Vol 5, 1230. DOI:10.3389/fpsyg.2014.01230. [Crossref]
47. Samaha J., Postle B. R. (2015). "The speed of alpha-band oscillations predicts the temporal resolution of visual perception", Curr. Biol. Vol 25, 29852990. [Crossref]
48. Senkowski D., Schneider T., Foxe J., Engel A. (2008). "Crossmodal binding through neural coherence: implications for multisensory processing", Trends Neurosci. Vol 31, 401409. [Crossref]
49. Shams L., Kamitani Y., Shimojo S. (2000). "Illusions. What you see is what you hear", Nature Vol 408(6814), 788. [Crossref]
50. Talsma D. (2015). "Predictive coding and multisensory integration: an attentional account of the multisensory mind", Front. Integr. Neurosci. Vol 9, 19. DOI:10.3389/fnint.2015.00019. [Crossref]
51. Talsma D., Senkowski D., Soto-Faraco S., Woldorff M. G. (2010). "The multifaceted interplay between attention and multisensory integration", Trends Cogn. Sci. Vol 14, 400410. [Crossref]
52. Thut G., Nietzel A., Brandt S. A., Pascual-Leone A. (2006). "Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection", J. Neurosci. Vol 26, 94949502. [Crossref]
53. Van Atteveldt N., Murray M. M., Thut G., Schroeder C. E. (2014). "Multisensory integration: flexible use of general operations", Neuron Vol 81, 12401253. [Crossref]
54. Van der Burg E., Olivers C. N. L., Bronkhorst A. W., Theeuwes J. (2008). "Audiovisual events capture attention: evidence from temporal order judgments", J. Vis. Vol 8, 2. DOI:10.1167/8.5.2.
55. Van Dijk H., Schoffelen J.-M., Oostenveld R., Jensen O. (2008). "Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability", J. Neurosci. Vol 28, 18161823. [Crossref]
56. Van Erp J. B. F., Philippi T. G., de Winkel K. N., Werkhoven P. (2014). "Pre- and post-stimulus EEG patterns associated with the touch-induced illusory flash", Neurosci. Lett. Vol 562, 7984. [Crossref]
57. Vibell J., Klinge C., Zampini M., Spence C., Nobre A. C. (2007). "Temporal order is coded temporally in the brain: early event-related potential latency shifts underlying prior entry in a cross-modal temporal order judgment task", J. Cogn. Neurosci. Vol 19, 109120. [Crossref]
58. Wang X.-J. (2010). "Neurophysiological and computational principles of cortical rhythms in cognition", Physiol. Rev. Vol 90, 11951268. [Crossref]
59. Wetzels R., Wagenmakers E.-J. (2012). "A default Bayesian hypothesis test for correlations and partial correlations", Psychonom. Bull. Rev. Vol 19, 10571064. [Crossref]
60. Wyart V., Tallon-Baudry C. (2009). "How ongoing fluctuations in human visual cortex predict perceptual awareness: baseline shift versus decision bias", J. Neurosci. Vol 29, 87158725. [Crossref]
61. Zumer J. M., Scheeringa R., Schoffelen J.-M., Norris D. G., Jensen O. (2014). "Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex", PLoS Biol. Vol 12, e1001965. DOI:10.1371/journal.pbio.1001965.s005. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-00002572
Loading

Article metrics loading...

/content/journals/10.1163/22134808-00002572
2017-08-02
2017-08-17

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation