Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Cortical Correlates of the Simulated Viewpoint Oscillation Advantage for Vection

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

Behavioural studies have consistently found stronger vection responses for oscillating, compared to smooth/constant, patterns of radial flow (the simulated viewpoint oscillation advantage for vection). Traditional accounts predict that simulated viewpoint oscillation should impair vection by increasing visual–vestibular conflicts in stationary observers (as this visual oscillation simulates self-accelerations that should strongly stimulate the vestibular apparatus). However, support for increased vestibular activity during accelerating vection has been mixed in the brain imaging literature. This fMRI study examined BOLD activity in visual (cingulate sulcus visual area — CSv; medial temporal complex — MT+; V6; precuneus motion area — PcM) and vestibular regions (parieto-insular vestibular cortex — PIVC/posterior insular cortex — PIC; ventral intraparietal region — VIP) when stationary observers were exposed to vection-inducing optic flow (i.e., globally coherent oscillating and smooth self-motion displays) as well as two suitable control displays. In line with earlier studies in which no vection occurred, CSv and PIVC/PIC both showed significantly increased BOLD activity during oscillating global motion compared to the other motion conditions (although this effect was found for fewer subjects in PIVC/PIC). The increase in BOLD activity in PIVC/PIC during prolonged exposure to the oscillating (compared to smooth) patterns of global optical flow appears consistent with vestibular facilitation.

Affiliations: 1: 1Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada ; 2: 2Centre for Psychophysics, Psychophysiology, and Psychopharmacology ; 3: 3School of Psychology, University of Wollongong, Wollongong, NSW, 2522, Australia

*To whom correspondence should be addressed. E-mail:

Full text loading...


Data & Media loading...

1. Abeles M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press, Cambridge, UK. [Crossref]
2. Allison R. S., Zacher J. E., Kirollos R., Guterman P. S., Palmisano S. (2012). "Perception of smooth and perturbed vection in short-duration microgravity", Exp. Brain Res. Vol 223, 479487. [Crossref]
3. Attwell D., Iadecola C. (2002). "The neural basis of functional brain imaging signals", Trends Neurosci. Vol 25, 621625. [Crossref]
4. Billington J., Wilkie R. M., Wann J. P. (2013). "Obstacle avoidance and smooth trajectory control: neural areas highlighted during improved locomotor performance", Front. Behav. Neurosci. Vol 7, 9. DOI:10.3389/fnbeh.2013.00009. [Crossref]
5. Braitenberg V., Schüz A. (1998). Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd edn. Springer-Verlag, Heidelberg, Germany. [Crossref]
6. Brandt S. A., Brocke J., Roricht S., Ploner C. J., Villringer A., Meyer B. U. (2002). "In vivo assessment of human visual system connectivity with transcranial electrical stimulation during functional magnetic resonance imaging", Neuroimage Vol 14, 366375. [Crossref]
7. Brandt T., Bartenstein P., Janek A., Dieterich M. (1998). "Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex", Brain Vol 121, 17491758. [Crossref]
8. Bremmer F., Schlack A., Shah N. J., Zafiris O., Kubischik M., Hoffmann K., Fink G. R. (2001). "Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys", Neuron Vol 29, 287296. [Crossref]
9. Cardin V., Smith A. T. (2010). "Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation", Cereb. Cortex Vol 20, 19641973. [Crossref]
10. Cardin V., Smith A. T. (2011). "Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion", J. Neurophysiol. Vol 106, 12401249. [Crossref]
11. Deutschländer A., Bense S., Stephan T., Schwaiger M., Brandt T., Dietrich M. (2002). "Sensory systems interactions during simultaneous vestibular and visual stimulation in PET", Hum Brain Mapp. Vol 16, 92103. [Crossref]
12. Deutschländer A., Bense S., Stephan T., Schwaiger T., Dieterich M., Brandt T. (2004). "Roll vection versus linear vection: comparison of brain activations in PET", Hum Brain Mapp. Vol 21, 143153. [Crossref]
13. Dieterich M., Bucher S. F., Seelos K. C., Brandt T. (1998). "Horizontal or vertical optokinetic stimulation activates visual motion-sensitive ocular-motor and vestibular cortex areas with right hemispheric dominance. An fMRI study", Brain Vol 121, 14791495. [Crossref]
14. Dieterich M., Bense S., Stephan T., Yousry T. A., Brandt T. (2003). "fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation", Exp, Brain Res. Vol 148, 117127. [Crossref]
15. Dukelow S. P., DeSouza J. F., Culham J. C., Van den Berg A. V., Menon R. S. (2001). "Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements", J. Neurophysiol. Vol 86, 19912000.
16. Fischer E., Bülthoff H. H., Logothetis N. K., Bartels A. (2012). "Visual motion responses in the posterior cingulate sulcus: a comparison to V5/MT and MST", Cereb. Cortex Vol 22, 865876. [Crossref]
17. Frank S. M., Wirth A. M., Greenlee M. W. (2016). "Visual–vestibular processing in the human Sylvian fissure", J. Neurophysiol. Vol 116, 263271. [Crossref]
18. Furlan M., Wann J. P., Smith A. T. (2013). "A representation of changing heading direction in human cortical areas pVIP and CSv", Cereb. Cortex Vol 24, 28482858. [Crossref]
19. Gibson J. J. (1966). The Senses Considered as Perceptual Systems. Houghton Mifflin, Boston, MA, USA.
20. Helmholtz H. (1867). Handbuch der Physiologischen Optik, Vol Vol. 9. Leopold Voss, Leipzig, Germany.
21. Howard I. (1982). Human Visual Orientation. Wiley, New York, NY, USA.
22. Huk A. C., Heeger D. J. (2002). "Pattern-motion responses in human visual cortex", Nat. Neurosci. Vol 5, 7275. [Crossref]
23. Kovács G., Raabe M., Greenlee M. W. (2008). "Neural correlates of visually induced self-motion illusion in depth", Cereb. Cortex Vol 18, 17791787. [Crossref]
24. Lee J. H., Durand R., Gradinaru V., Zhang F., Goshen I., Kim D. S., Deisseroth K. (2010). "Global and local fMRI signals driven by neurons defined optogenetically by type and wiring", Nature Vol 465(7299), 788792. [Crossref]
25. Lepecq J. C., De Waele C., Mertz-Josse S., Teyssèdre C., Huy P. T., Baudonnière P. M., Vidal P. P. (2006). "Galvanic vestibular stimulation modifies vection paths in healthy subjects", J. Neurophysiol. Vol 95, 31993207. [Crossref]
26. Lishman J. R., Lee D. N. (1973). "The autonomy of visual kinaesthesis", Perception Vol 2, 287294. [Crossref]
27. Logothetis N. K. (2008). "What we can do and what we cannot do with fMRI", Nature Vol 453(7197), 869878. [Crossref]
28. Mach E. (1875). Grundlinien der Lehre von den Bewegungsempfindungen. Engelmann, Leipzig, Germany.
29. Miyazaki J., Yamamoto H., Ichimura Y., Yamashiro H., Murase T., Yamamoto T., Higuchi T. (2015). "Inter-hemispheric desynchronization of the human MT+ during visually induced motion sickness", Exp, Brain Res. Vol 233, 24212431. [Crossref]
30. Nishiike S., Nakagawa S., Nakagawa A., Uno A., Tonoike M., Takeda N., Kubo T. (2002). "Magnetic cortical responses evoked by visual linear forward acceleration", Neuroreport Vol 13, 18051808. [Crossref]
31. Oman C. H. (1982). "A heuristic mathematical model for the dynamics of sensory conflict and motion sickness", Acta Oto-Laryngologica Vol 94, 444. [Crossref]
32. Palmisano S., Gillam B. J., Blackburn S. G. (2000). "Global-perspective jitter improves vection in central vision", Perception Vol 29, 5767. [Crossref]
33. Palmisano S., Allison R. S., Pekin F. (2008). "Accelerating self-motion displays produce more compelling vection in depth", Perception Vol 37, 2233. [Crossref]
34. Palmisano S., Allison R. S., Kim J., Bonato F. (2011). "Simulated viewpoint jitter shakes sensory conflict accounts of vection", See. Perceiv. Vol 24, 173200. [Crossref]
35. Palmisano S., Allison R. S., Schira M. M., Barry R. J. (2015). "Future challenges for vection research: definitions, functional significance, measures and neural bases", Front. Psychol. Vol 6, 193. DOI:10.3389/fpsyg.2015.00193. [Crossref]
36. Pitzalis S., Sereno M. I., Committeri G., Fattori P., Galati G., Patria F., Galletti C. (2010). "Human V6: the medial motion area", Cereb. Cortex Vol 20, 411424. [Crossref]
37. Pitzalis S., Sdoia S., Bultrini A., Committeri G., Di Russo F., Fattori P., Galletti C., Galati G. (2013). "Selectivity to translational egomotion in human brain motion areas", PLoS One Vol 8, e60241. DOI:10.1371/journal.pone.0060241. [Crossref]
38. Previc F. H., Ercoline W. R. (Eds) (2004). Spatial Disorientation in Aviation, Vol Vol. 203. AIAA, Rewston, VA, USA.
39. Reason J. T. (1978). "Motion sickness adaptation: a neural mismatch model", R. Soc. Med. Vol 71, 819829.
40. Roberts D. C., Marcelli V., Gillen J. S., Carey J. P., Della Santina C. C., Zee D. S. (2011). "MRI magnetic field stimulates rotational sensors of the brain", Curr. Biol. Vol 21, 16351640. [Crossref]
41. Smith A. T., Wall M. B., Thilo K. V. (2012). "Vestibular inputs to human motion-sensitive visual cortex", Cereb. Cortex Vol 22, 10681077. DOI:10.1093/cercor/bhr179. [Crossref]
42. Stevens S. S. (1959). "Cross-modality validation of subjective scales for loudness, vibration, and electric shock", J. Exp. Psychol. Vol 57, 201209. [Crossref]
43. Tootell R. B., Reppas J. B., Kwong K. K., Malach R., Born R. T., Brady T. J., Belliveau J. W. (1995). "Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging", J. Neurosci. Vol 15, 32153230.
44. Uesaki M., Ashida H. (2015). "Optic-flow selective cortical sensory regions associated with self-reported states of vection", Front. Psychol. Vol 6, 755. DOI:10.3389/fpsyg.2015.00775. [Crossref]
45. Wada A., Sakano Y., Ando H. (2016). "Differential responses to a visual self-motion signal in human medial cortical regions revealed by wide-view stimulation", Front. Psychol. Vol 7, 309. DOI:10.3389/fpsyg.2016.00309. [Crossref]
46. Waldvogel D., Van Gelderen P., Muellbacher W., Ziemann U., Immisch I., Hallett M. (2000). "The relative metabolic demand of inhibition and excitation", Nature Vol 406(6799), 995998. [Crossref]
47. Wall M. B., Smith A. T. (2008). "The representation of egomotion in the human brain", Curr. Biol. Vol 18, 191194. [Crossref]
48. Watson J. D., Myers R., Frackowiak R. S., Hajnal J. V., Woods R. P., Mazziotta J. C., Zeki S. (1993). "Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging", Cereb. Cortex Vol 3, 7994. [Crossref]
49. Wolbers T., Wiener J. M., Mallot H. A., Büchel C. (2007). "Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans", J. Neurosci. Vol 27, 94089416. [Crossref]
50. Wolbers T., Hegarty M., Büchel C., Loomis J. M. (2008). "Spatial updating: how the brain keeps track of changing object locations during observer motion", Nat. Neurosci. Vol 11, 12231230. [Crossref]
51. Worsley K. J., Evans A. C., Marrett S., Neelin P. (1992). "A three-dimensional statistical analysis for CBF activation studies in human brain", J. Cereb. Blood Flow Metab. Vol 12, 900918. [Crossref]
52. Zeki S., Watson J. D., Lueck C. J., Friston K. J., Kennard C., Frackowiak R. S. (1991). "A direct demonstration of functional specialization in human visual cortex", J. Neurosci. Vol 11, 641649.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation