Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Open Access Aging and Sensitivity to Illusory Target Motion With or Without Secondary Tasks

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Aging and Sensitivity to Illusory Target Motion With or Without Secondary Tasks

  • HTML
  • PDF
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

Older individuals seem to find it more difficult to ignore inaccurate sensory cues than younger individuals. We examined whether this could be quantified using an interception task. Twenty healthy young adults (age 18–34) and twenty-four healthy older adults (age 60–82) were asked to tap on discs that were moving downwards on a screen with their finger. Moving the background to the left made the discs appear to move more to the right. Moving the background to the right made them appear to move more to the left. The discs disappeared before the finger reached the screen, so participants had to anticipate how the target would continue to move. We examined how misjudging the disc’s motion when the background moves influenced tapping. Participants received veridical feedback about their performance, so their sensitivity to the illusory motion indicates to what extent they could ignore the task-irrelevant visual information. We expected older adults to be more sensitive to the illusion than younger adults. To investigate whether sensorimotor or cognitive load would increase this sensitivity, we also asked participants to do the task while standing on foam or counting tones. Background motion influenced older adults more than younger adults. The secondary tasks did not increase the background’s influence. Older adults might be more sensitive to the moving background because they find it more difficult to ignore irrelevant sensory information in general, but they may rely more on vision because they have less reliable proprioceptive and vestibular information.

Affiliations: 1: 1Predictive Health Technologies, TNO, Leiden, the Netherlands ; 2: 2Perceptual and Cognitive Systems, TNO, Soesterberg, the Netherlands ; 3: 3University of Twente, Enschede, the Netherlands ; 4: 4University of Applied Sciences Leiden, Leiden, the Netherlands ; 5: 5Thim van der Laan, University for Physiotherapy, Nieuwegein, the Netherlands ; 6: 6Vrije Universiteit, Amsterdam, the Netherlands

*To whom correspondence should be addressed. E-mail: alix.dedieuleveult@tno.nl

Older individuals seem to find it more difficult to ignore inaccurate sensory cues than younger individuals. We examined whether this could be quantified using an interception task. Twenty healthy young adults (age 18–34) and twenty-four healthy older adults (age 60–82) were asked to tap on discs that were moving downwards on a screen with their finger. Moving the background to the left made the discs appear to move more to the right. Moving the background to the right made them appear to move more to the left. The discs disappeared before the finger reached the screen, so participants had to anticipate how the target would continue to move. We examined how misjudging the disc’s motion when the background moves influenced tapping. Participants received veridical feedback about their performance, so their sensitivity to the illusory motion indicates to what extent they could ignore the task-irrelevant visual information. We expected older adults to be more sensitive to the illusion than younger adults. To investigate whether sensorimotor or cognitive load would increase this sensitivity, we also asked participants to do the task while standing on foam or counting tones. Background motion influenced older adults more than younger adults. The secondary tasks did not increase the background’s influence. Older adults might be more sensitive to the moving background because they find it more difficult to ignore irrelevant sensory information in general, but they may rely more on vision because they have less reliable proprioceptive and vestibular information.

Loading

Full text loading...

/deliver/journals/22134808/31/3-4/22134808_031_03-04_s006_text.html?itemId=/content/journals/10.1163/22134808-00002596&mimeType=html&fmt=ahah
/content/journals/10.1163/22134808-00002596
Loading

Data & Media loading...

1. Atchley P., Andersen G. J. (1998). "The effect of age, retinal eccentricity, and speed on the detection of optic flow components", Psychol. Aging Vol 13, 297308. [Crossref]
2. Bennett P. J., Sekuler R., Sekuler A. B. (2007). "The effects of aging on motion detection and direction identification", Vis. Res. Vol 47, 799809. [Crossref]
3. Berard J., Fung J., Lamontagne A. (2012). "Impact of aging on visual reweighting during locomotion", Clin Neurophysiol. Vol 123, 14221428. [Crossref]
4. Bisson E. J., Lajoie Y., Bilodeau M. (2014). "The influence of age and surface compliance on changes in postural control and attention due to ankle neuromuscular fatigue", Exp. Brain Res. Vol 232, 837845. [Crossref]
5. Brenner E., Smeets J. B. J. (1997). "Fast responses of the human hand to changes in target position", J. Mot. Behav. Vol 29, 297310. [Crossref]
6. Brenner E., Smeets J. B. J. (2015). "How moving backgrounds influence interception", PloS One Vol 10, e0119903. DOI:10.1371/journal.pone.0119903.
7. Brenner E., Van den Berg A. V. (1994). "Judging object velocity during smooth pursuit eye movements", Exp. Brain Res. Vol 99, 316324. [Crossref]
8. Brenner E., Van den Berg A. V. (1996). "The special role of distant structures in perceived object velocity", Vis. Res. Vol 36, 38053814. [Crossref]
9. Brouwer A.-M., Brenner E., Smeets J. B. J. (2002). "Hitting moving objects: is target speed used in guiding the hand?" Exp. Brain Res. Vol 143, 198211. [Crossref]
10. Brouwer A.-M., Middelburg T., Smeets J. B., Brenner E. (2003). "Hitting moving targets: a dissociation between the use of the target’s speed and direction of motion", Exp. Brain Res. Vol 152, 368375. [Crossref]
11. Christensen H., Mackinnon A., Jorm A. F., Henderson A. S., Scott L. R., Korten A. E. (1994). "Age differences and interindividual variation in cognition in community-dwelling elderly", Psychol. Aging Vol 9, 381390. [Crossref]
12. Conlon E. G., Power G. F., Hine T. J., Rahaley N. (2017). "The impact of older age and sex on motion discrimination", Exp. Aging Res. Vol 43, 5579. [Crossref]
13. Cruz-Jentoft A. J., Baeyens J. P., Bauer J. M., Boirie Y., Cederholm T., Landi F., Martin F. C., Michel J. P., Rolland Y., Schneider S. M., Topinková E., Vandewoude M., Zamboni M., European Working Group on Sarcopenia in Older People (2010). "Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People", Age Aging Vol 39, 412423. [Crossref]
14. de Dieuleveult A. L., Siemonsma P. C., van Erp J. B., Brouwer A. M. (2017). "Effects of aging in multisensory integration: a systematic review", Front. Aging Neurosci. Vol 9, 80. DOI:10.3389/fnagi.2017.00080.
15. DeLoss D. J., Pierce R. S., Andersen G. J. (2013). "Multisensory integration, aging, and the sound-induced flash illusion", Psychol. Aging Vol 28, 802812. [Crossref]
16. Deshpande N., Zhang F. (2014). "Trunk, head, and step characteristics during normal and narrow-based walking under deteriorated sensory conditions", J. Mot. Behav. Vol 46, 125132. [Crossref]
17. Dick J. P. R., Guiloff R. J., Stewart A. (1984). "Mini-mental state examination in neurological patients", J. Neurol. Neurosurg. Psychiat. Vol 47, 496499. [Crossref]
18. Diederich A., Colonius H., Schomburg A. (2008). "Assessing age-related multisensory enhancement with the time-window-of-integration model", Neuropsychologia Vol 46, 25562562. [Crossref]
19. Duncker K. (1929). "Über induzierte Bewegung", Psychol. Forsch. Vol 12, 180259. [Crossref]
20. Eikema D. J. A., Hatzitaki V., Tzovaras D., Papaxanthis C. (2014). "Application of intermittent galvanic vestibular stimulation reveals age-related constraints in the multisensory reweighting of posture", Neurosci. Lett. Vol 561, 112117. [Crossref]
21. Ernst M. O., Banks M. S. (2002). "Humans integrate visual and haptic information in a statistically optimal fashion", Nature Vol 415(6870), 429433. [Crossref]
22. Glisky E. L. (2007). "Changes in cognitive function in human aging", in: Brain Aging: Models, Methods, and Mechanisms, Riddle D. R. (Ed.), pp.  320. CRC Press/Taylor and Francis, Boca Raton, FL, USA. [Crossref]
23. Guerreiro M. J. S., Anguera J. A., Mishra J., Van Gerven P. W., Gazzaley A. (2014). "Age-equivalent top-down modulation during cross-modal selective attention", J. Cogn. Neurosci. Vol 26, 28272839. [Crossref]
24. Guerreiro M. J. S., Eck J., Moerel M., Evers E. A., Van Gerven P. W. (2015). "Top-down modulation of visual and auditory cortical processing in aging", Behav. Brain Res. Vol 278, 226234. [Crossref]
25. Guralnik J. M., Simonsick E. M., Ferrucci L., Glynn R. J., Berkman L. F., Blazer D. G., Scherr P. A., Wallace R. B. (1994). "A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission", J. Gerontol. Vol 49, M85M94. [Crossref]
26. Horn L. B., Scherer M. R. (2015). "Measurement characteristics and clinical utility of the clinical test of sensory interaction on balance (CTSIB) and modified CTSIB in individuals with vestibular dysfunction", Arch. Phys. Med. Rehab. Vol 96, 17471748. [Crossref]
27. Hugenschmidt C. E., Peiffer A. M., McCoy T. P., Hayasaka S., Laurienti P. J. (2009). "Preservation of crossmodal selective attention in healthy aging", Exp. Brain Res. Vol 198, 273285. [Crossref]
28. Katz S. (1963). "Studies of illness in the aged", J. Am. Med. Assoc. Vol 185, 914. [Crossref]
29. Kavcic V., Vaughn W., Duffy C. J. (2011). "Distinct visual motion processing impairments in aging and Alzheimer’s disease", Vis. Res. Vol 51, 386395. [Crossref]
30. Lawton M. P., Brody E. M. (1969). "Assessment of older people: self-maintaining and instrumental activities of daily living", Gerontologist Vol 9, 179186. [Crossref]
31. Lowry K. A., Vallejo A. N., Studenski S. A. (2012). "Successful aging as a continuum of functional independence: lessons from physical disability models of aging", Aging Dis. Vol 3, 515.
32. Mahboobin A., Loughlin P. J., Redfern M. S. (2007). "A model-based approach to attention and sensory integration in postural control of older adults", Neurosci. Lett. Vol 429, 147151. [Crossref]
33. McGovern D. P., Roudaia E., Stapleton J., McGinnity T. M., Newell F. N. (2014). "The sound-induced flash illusion reveals dissociable age-related effects in multisensory integration", Front. Aging Neurosci. Vol 6, 250. DOI:10.3389/fnagi.2014.00250. [Crossref]
34. Nakayama K. (1985). "Biological image motion processing: a review", Vis. Res. Vol 25, 625660. [Crossref]
35. Newell K. M., Vaillancourt D. E., Sosnoff J. J. (2006). Handbook of the Psychology of Aging. Elsevier, Amsterdam, The Netherlands.
36. Norman J. F., Ross H. E., Hawkes L. M., Long J. R. (2003). "Aging and the perception of speed", Perception Vol 32, 8596. [Crossref]
37. Owsley C. (2011). "Aging and vision", Vis. Res. Vol 51, 16101622. [Crossref]
38. Pavasini R., Guralnik J., Brown J. C., di Bari M., Cesari M., Landi F., Vaes B., Legrand D., Verghese J., Wang C., Stenholm S., Ferrucci L., Lai J. C., Bartes A. A., Espaulella J., Ferrer M., Lim J. Y., Ensrud K. E., Cawthon P., Turusheva A., Frolova E., Rolland Y., Lauwers V., Corsonello A., Kirk G. D., Ferrari R., Volpato S., Campo G. (2016). "Short physical performance battery and all-cause mortality: systematic review and meta-analysis", BMC Med. Vol 14(1), 215. DOI:10.1186/s12916-016-0763-7. [Crossref]
39. Pilz K. S., Bennett P. J., Sekuler A. B. (2010). "Effects of aging on biological motion discrimination", Vis. Res. Vol 50, 211219. [Crossref]
40. Ramkhalawansingh R., Keshavarz B., Haycock B., Shahab S., Campos J. L. (2017). "Examining the effect of age on visual–vestibular self-motion perception using a driving paradigm", Perception Vol 46, 566585. [Crossref]
41. Redfern M. S., Jennings J. R., Martin C., Furman J. M. (2001). "Attention influences sensory integration for postural control in older adults", Gait Posture Vol 14, 211216. [Crossref]
42. Redfern M. S., Jennings J. R., Mendelson D., Nebes R. D. (2009). "Perceptual inhibition is associated with sensory integration in standing postural control among older adults", J. Gerontol. B Psychol. Sci. Soc. Sci. Vol 64, 569576. [Crossref]
43. Saijo N., Murakami I., Nishida S., Gomi H. (2005). "Large-field visual motion directly induces an involuntary rapid manual following response", J. Neurosci. Vol 25, 49414951. [Crossref]
44. Schweigart G., Mergner T., Barnes G. (2003). "Object motion perception is shaped by the motor control mechanism of ocular pursuit", Exp. Brain Res. Vol 148, 350365. [Crossref]
45. Shumway-Cook A., Horak F. B. (1986). "Assessing the influence of sensory interaction of balance. Suggestion from the field", Phys. Ther. Vol 66, 15481550. [Crossref]
46. Snowden R. J., Kavanagh E. (2006). "Motion perception in the ageing visual system: minimum motion, motion coherence, and speed discrimination thresholds", Perception Vol 35, 924. [Crossref]
47. Soechting J. F., Engel K. C., Flanders M. (2001). "The Duncker illusion and eye–hand coordination", J. Neurophysiol. Vol 85, 843854.
48. Teasdale N., Stelmach G. E., Breunig A., Meeuwsen H. J. (1991). "Age differences in visual sensory integration", Exp. Brain Res. Vol 85, 691696. [Crossref]
49. Townsend J., Adamo M., Haist F. (2006). "Changing channels: an fMRI study of aging and cross-modal attention shifts", NeuroImage Vol 31, 16821692. [Crossref]
50. Trick G. L., Silverman S. E. (1991). "Visual sensitivity to motion: age-related changes and deficits in senile dementia of the Alzheimer type", Neurology Vol 41, 14371440. [Crossref]
51. Van Beers R. J., Sittig A. C., Gon J. J. (1999). "Integration of proprioceptive and visual position-information: an experimentally supported model", J. Neurophysiol. Vol 81, 13551364.
52. Van Beers R. J., Van Mierlo C. M., Smeets J. B., Brenner E. (2011). "Reweighting visual cues by touch", J. Vis. Vol 11, 20. DOI:10.1167/11.10.20.
53. Vernooij C. A. , et al, (2016). "The effect of aging on muscular dynamics underlying movement patterns changes", Front. Aging Neurosci. Vol 8, 309. DOI:10.3389/fnagi.2016.00309. [Crossref]
54. Yeh T. T., Cinelli M. E., Lyons J. L., Lee T. D. (2015). "Age-related changes in postural control to the demands of a precision task", Hum. Mov. Sci. Vol 44, 134142. [Crossref]
55. Zivotofsky A. Z. (2004). "The Duncker illusion: intersubject variability, brief exposure, and the role of eye movements in its generation", Invest. Opthalmol. Vis. Sci. Vol 45, 28672872. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-00002596
Loading
Loading

Article metrics loading...

/content/journals/10.1163/22134808-00002596
2018-01-01
2018-01-17

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation