Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Transfer of Audio-Visual Temporal Training to Temporal and Spatial Audio-Visual Tasks

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

Temporal and spatial characteristics of sensory inputs are fundamental to multisensory integration because they provide probabilistic information as to whether or not multiple sensory inputs belong to the same event. The multisensory temporal binding window defines the time range within which two stimuli of different sensory modalities are merged into one percept and has been shown to depend on training. The aim of the present study was to evaluate the role of the training procedure for improving multisensory temporal discrimination and to test for a possible transfer of training to other multisensory tasks. Participants were trained over five sessions in a two-alternative forced-choice simultaneity judgment task. The task difficulty of each trial was either at each participant’s threshold (adaptive group) or randomly chosen (control group). A possible transfer of improved multisensory temporal discrimination on multisensory binding was tested with a redundant signal paradigm in which the temporal alignment of auditory and visual stimuli was systematically varied. Moreover, the size of the spatial audio-visual ventriloquist effect was assessed. Adaptive training resulted in faster improvements compared to the control condition. Transfer effects were found for both tasks: The processing speed of auditory inputs and the size of the ventriloquist effect increased in the adaptive group following the training. We suggest that the relative precision of the temporal and spatial features of a cross-modal stimulus is weighted during multisensory integration. Thus, changes in the precision of temporal processing are expected to enhance the likelihood of multisensory integration for temporally aligned cross-modal stimuli.

Affiliations: 1: 1Biological Psychology and Neuropsychology, University of Hamburg, Von Melle Park 11, 20146 Hamburg, Germany ; 2: 2IMT School for Advanced Studies Lucca, Lucca, Italy

*To whom correspondence should be addressed. E-mail:

Full text loading...


Data & Media loading...

1. Alais D., Burr D. (2004). "The ventriloquist effect results from near-optimal bimodal integration", Curr. Biol. Vol 14, 257262. [Crossref]
2. Bolognini N., Frassinetti F., Serino A., Làdavas E. (2005). "“Acoustical vision” of below threshold stimuli: interaction among spatially converging audiovisual inputs", Exp. Brain Res. Vol 160, 273282. [Crossref]
3. Charbonneau G., Véronneau M., Boudrias-Fournier C., Lepore F., Collignon O. (2013). "The ventriloquist in periphery: impact of eccentricity-related reliability on audio-visual localization", J. Vis. Vol 13, 20. DOI:10.1167/13.12.20.
4. De Niear M. A., Koo B., Wallace M. T. (2016). "Multisensory perceptual learning is dependent upon task difficulty", Exp. Brain Res. Vol 234, 32693277. [Crossref]
5. Diederich A., Colonius H. (1987). "Intersensory facilitation in the motor component?" Psychol. Res. Vol 49, 2329. [Crossref]
6. Diederich A., Colonius H. (2004). "Bimodal and trimodal multisensory enhancement: effects of stimulus onset and intensity on reaction time", Percept. Psychophys. Vol 66, 13881404. [Crossref]
7. Doehrmann O., Naumer M. J. (2008). "Semantics and the multisensory brain: how meaning modulates processes of audio-visual integration", Brain Res. Vol 1242, 136150. [Crossref]
8. Dunning D. L., Holmes J. (2014). "Does working memory training promote the use of strategies on untrained working memory tasks?" Mem. Cogn. Vol 42, 854862. [Crossref]
9. Dunning D. L., Holmes J., Gathercole S. E. (2013). "Does working memory training lead to generalized improvements in children with low working memory ? A randomized controlled trial", Dev. Sci. Vol 6, 915925.
10. Ernst M. O., Banks M. S. (2002). "Humans integrate visual and haptic information in a statistically optimal fashion", Nature Vol 415(6870), 429433. [Crossref]
11. Frassinetti F., Bolognini N., Làdavas E. (2002). "Enhancement of visual perception by cross-modal visuo-auditory interaction", Exp. Brain Res. Vol 147, 332343. [Crossref]
12. Gingras G., Rowland B. A., Stein B. E. (2009). "The differing impact of multisensory and unisensory integration on behavior", J. Neurosci. Vol 29, 48974902. [Crossref]
13. Habets B., Bruns P., Röder B. (2017). "Experience with cross-modal statistics reduces the sensitivity for audio-visual temporal asynchrony", Sci. Rep. Vol 7, 1486. DOI:10.1038/s41598-017-01252-y. [Crossref]
14. Hairston W. D., Wallace T., Vaughan J. W., Stein B. E., Norris J. L., Schirillo J. A. (2003). "Visual localization ability influences cross-modal bias", J. Cogn. Neurosci. Vol 15, 2029. [Crossref]
15. Hairston W. D., Burdette J. H., Flowers D. L., Wood F. B., Wallace M. T. (2005). "Altered temporal profile of visual-auditory multisensory interactions in dyslexia", Exp. Brain Res. Vol 166, 474480. [Crossref]
16. Hershenson M. (1962). "Reaction time as a measure of intersensory facilitation", J. Exp. Psychol. Vol 63, 289293. [Crossref]
17. Holmes J., Gathercole S. E., Dunning D. L. (2009). "Adaptive training leads to sustained enhancement of poor working memory in children", Dev. Sci. Vol 12, F9F15. [Crossref]
18. Hughes H. C., Reuter-Lorenz P. A., Nozawa G., Fendrich R. (1994). "Visual-auditory interactions in sensorimotor processing: saccades versus manual responses", J. Exp. Psychol. Hum. Percept. Perform. Vol 20, 131153. [Crossref]
19. Kayser C., Shams L. (2015). "Multisensory causal inference in the brain", PLOS Biol. Vol 13, e1002075. DOI:10.1371/journal.pbio.1002075. [Crossref]
20. Leek M. R. (2001). "Adaptive procedures in psychophysical research", Percept. Psychophys. Vol 63, 12791292. [Crossref]
21. Lovelace C. T., Stein B. E., Wallace M. T. (2003). "An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detection", Cogn. Brain Res. Vol 17, 447453. [Crossref]
22. Maier J. X., DiLuca M., Noppeney U. (2011). "Audiovisual asynchrony detection in human speech", J. Exp. Psychol. Hum. Percept. Perform. Vol 37, 245256. [Crossref]
23. McGovern D. P., Roudaia E., Newell F. N., Roach N. W. (2016a). "Perceptual learning shapes multisensory causal inference via two distinct mechanisms", Sci. Rep. Vol 6, 24673. DOI:10.1038/srep24673. [Crossref]
24. McGovern D. P., Astle A. T., Clavin S. L., Newell F. N. (2016b). "Task-specific transfer of perceptual learning across sensory modalities", Curr. Biol. Vol 26, R20R21. [Crossref]
25. Metzler-Baddeley C., Baddeley R. J. (2009). "Does adaptive training work?" Appl. Cogn. Psychol. Vol 266, 254266. [Crossref]
26. Miller J. (1982). "Divided attention: evidence for coactivation with redundant signals", Cogn. Psychol. Vol 14, 247279. [Crossref]
27. Morein-Zamir S., Soto-Faraco S., Kingstone A. (2003). "Auditory capture of vision: examining temporal ventriloquism", Cogn. Brain Res. Vol 17, 154163. [Crossref]
28. Navarra J., Hartcher-O’Brien J., Piazza E., Spence C. (2009). "Adaptation to audiovisual asynchrony modulates the speeded detection of sound", Proc. Natl Acad. Sci. U.S.A. Vol 106, 91699173. [Crossref]
29. Nelson W., Hettinger L. J., Cunningham J. A., Brickman B. J., Haas M., McKinley R. (1998). "Effects of localized auditory information on visual target detection performance using a helmet-mounted display", Hum. Fact. Vol 40, 452460. [Crossref]
30. Plat F. M., Praamstra P., Horstink M. W. I. M. (2000). "Redundant-signals effects on reaction time, response force and movement-related potentials in Parkinson’s disease", Exp. Brain Res. Vol 130, 533539. [Crossref]
31. Powers A., Hillock A. R., Wallace T. (2009). "Perceptual training narrows the temporal window of multisensory binding", J. Neurosci. Vol 29, 1226512274. [Crossref]
32. Powers A., Hevey M., Wallace M. T. (2012). "Neural correlates of multisensory perceptual learning", J. Neurosci. Vol 32, 62636274. [Crossref]
33. Powers A. R., Dunn A. H., Wallace M. T. (2016). "Generalization of multisensory perceptual learning", Sci. Rep. Vol 6, 23374. DOI:10.1038/srep23374.
34. Radeau M., Bertelson P. (1987). "Auditory–visual interaction and the timing of inputs", Psychol. Res. Vol 49, 1722. [Crossref]
35. Roach N. W., Heron J., Whitaker D., McGraw P. V. (2011). "Asynchrony adaptation reveals neural population code for audio-visual timing", Proc. Biol. Sci. Vol 278, 13141322. [Crossref]
36. Seitz A. R., Nanez J. E., Holloway S. R., Watanabe T. (2006). "Perceptual learning of motion leads to faster flicker perception", PloS One Vol 1, e28. DOI:10.1371/journal.pone.0000028. [Crossref]
37. Setti A., Stapleton J., Leahy D., Walsh C., Kenny R. A., Newell F. N. (2014). "Improving the efficiency of multisensory integration in older adults: audio-visual temporal discrimination training reduces susceptibility to the sound-induced flash illusion", Neuropsychologia Vol 61, 259268. [Crossref]
38. Shams L., Kamitani Y., Shimojo S. (2000). "Illusions. What you see is what you hear", Nature Vol 408(6814), 788. [Crossref]
39. Shibata K., Sasaki Y., Bang J. W., Walsh E. G., Machizawa M. G., Tamaki M., Chang L.-H., Watanabe T. (2017). "Overlearning hyperstabilizes a skill by rapidly making neurochemical processing inhibitory-dominant", Nat. Neurosci. Vol 20, 470475. [Crossref]
40. Slutsky D., Recanzone G. H. (2001). "Temporal and spatial dependency of the ventriloquism effect", Neuroreport Vol 12, 710. [Crossref]
41. Stevenson R. A., Wallace M. T. (2013). "Multisensory temporal integration: task and stimulus dependencies", Exp. Brain Res. Vol 227, 249261. [Crossref]
42. Stevenson R., Wilson M. M., Powers A. R., Wallace M. T. (2013). "The effects of visual training on multisensory temporal processing", Exp. Brain Res. Vol 225, 479489. [Crossref]
43. Treutwein B. (1995). "Adaptive psychophysical procedures", Vis. Res. Vol 35, 25032522. [Crossref]
44. Vatakis A., Spence C. (2006). "Audiovisual synchrony perception for music, speech and object actions", Brain Res. Vol 1111, 134142. [Crossref]
45. Wallace M. T., Roberson G. E., Hairston W. D., Stein B. E., Vaughan J. W., Schirillo J. A. (2004). "Unifying multisensory signals across time and space", Exp. Brain Res. Vol 158, 252258. [Crossref]
46. Watson A. B., Pelli D. G. (1983). "QUEST: a Bayesian adaptive psychometric method", Percept. Psychophys. Vol 33, 113120. [Crossref]
47. Welch R. B., Warren D. H. (1980). "Immediate perceptual response to intersensory discrepancy", Psychol. Bull. Vol 88, 638667. [Crossref]
48. Zhou Y., Huang C., Xu P., Tao L., Qiu Z., Li X., Lu Z.-L. (2006). "Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia", Vis. Res. Vol 46, 739750. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation