Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Amending Ongoing Upper-Limb Reaches: Visual and Proprioceptive Contributions?

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

In order to maximize the precise completion of voluntary actions, humans can theoretically utilize both visual and proprioceptive information to plan and amend ongoing limb trajectories. Although vision has been thought to be a more dominant sensory modality, research has shown that sensory feedback may be processed as a function of its relevance and reliability. As well, theoretical models of voluntary action have suggested that both vision and proprioception can be used to prepare online trajectory amendments. However, empirical evidence regarding the use of proprioception for online control has come from indirect manipulations from the sensory feedback (i.e., without directly perturbing the afferent information; e.g., visual–proprioceptive mismatch). In order to directly assess the relative contributions of visual and proprioceptive feedback to the online control of voluntary actions, direct perturbations to both vision (i.e., liquid crystal goggles) and proprioception (i.e., tendon vibration) were implemented in two experiments. The first experiment employed the manipulations while participants simply performed a rapid goal-directed movement (30 cm amplitude). Results from this first experiment yielded no significant evidence that proprioceptive feedback contributed to online control processes. The second experiment employed an imperceptible target jump to elicit online trajectory amendments. Without or with tendon vibration, participants still corrected for the target jumps. The current study provided more evidence of the importance of vision for online control but little support for the importance of proprioception for online limb–target regulation mechanisms.

Affiliations: 1: Perceptual Motor Behaviour Laboratory, Centre of Motor Control, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, M5S 2W6, Canada

*To whom correspondence should be addressed. E-mail: luc.tremblay@utoronto.ca
Loading

Full text loading...

/content/journals/10.1163/22134808-00002615
Loading

Data & Media loading...

1. Ashe J., Georgopoulos A. P. (1994). "Movement parameters and neural activity in motor cortex and area 5", Cereb. Cortex Vol 4, 590600. [Crossref]
2. Bagesteiro L. B., Sarlegna F. R., Sainburg R. L. (2006). "Differential influence of vision and proprioception on control of movement distance", Exp. Brain Res. Vol 171, 358370. [Crossref]
3. Bard C., Turrell Y., Fleury M., Teasdale N., Lamarre Y., Martin O. (1999). "Deafferentation and pointing with visual double-step perturbations", Exp. Brain Res. Vol 125, 410416. [Crossref]
4. Bernier P. M., Gauthier G. M., Blouin J. (2007). "Evidence for distinct, differentially adaptable sensorimotor transformations for reaches to visual and proprioceptive targets", J. Neurophysiol. Vol 98, 18151819. [Crossref]
5. Capaday C., Cooke J. D. (1981). "The effects of muscle vibration on the attainment of intended final position during voluntary human arm movements", Exp. Brain Res. Vol 42, 228230. [Crossref]
6. Chua R., Elliott D. (1993). "Visual regulation of manual aiming", Hum. Mov. Sci. Vol 12, 365401. [Crossref]
7. Churchland M. M., Santhanam G., Shenoy K. V. (2006). "Preparatory activity in premotor and motor cortex reflects the speed of the upcoming reach", J. Neurophysiol. Vol 96, 31303146. [Crossref]
8. Cressman E. K., Cameron B. D., Lam M. Y., Franks I. M., Chua R. (2010). "Movement duration does not affect automatic online control", Hum. Mov. Sci. Vol 29, 871881. [Crossref]
9. de Grosbois J., Tremblay L. (2015). Quantifying online visuomotor feedback utilization in the frequency domain, Behav. Res. Meth.
10. Elliott D., Carson R. G., Goodman D., Chua R. (1991). "Discrete vs. continuous visual control of manual aiming", Hum. Mov. Sci. Vol 10, 393418. [Crossref]
11. Elliott D., Hansen S., Grierson L. E. M., Lyons J., Bennett S. J., Hayes S. J. (2010). "Goal-directed aiming: two components but multiple processes", Psychol. Bull. Vol 136, 10231044. [Crossref]
12. Ernst M. O., Bülthoff H. H. (2004). "Merging the senses into a robust percept", Trends Cogn. Sci. Vol 8, 162169. [Crossref]
13. Fitts P. M. (1954). "The information capacity of the human motor system in controlling the amplitude of movement", J. Exp. Psychol. Vol 47, 381391. [Crossref]
14. Gardner E. P., Johnson K. O. (2013). "The somatosensory system: receptors and central pathways", in: Principles of Neural Science, Vol Vol. 5, Kandel E. R., Schwartz J. H., Jessell T. M., Siegelbaum S. A., Hudspeth A. J. (Eds), pp.  475495. McGraw-Hill, New York, NY, USA.
15. Ghez C., Gordon J., Ghilardi M. F. (1995). "Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy", J. Neurophysiol. Vol 73, 361372. [Crossref]
16. Goodale M., Pélisson D., Prablanc C. (1986). "Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement", Nature Vol 320, 748750. [Crossref]
17. Goodman R. (2015). Online multisensory control processes assessed with proprioceptive and visual manipulations, Master’s Thesis, University of Toronto. Retrieved from the University of Toronto T-Space. http://hdl.handle.net/1807/69088.
18. Goodwin G. M., McCloskey D. I., Matthews P. B. C. (1972). "Proprioceptive illusions induced by muscle vibration: contribution by muscle spindles to perception?" Science Vol 175, 13821384. [Crossref]
19. Grierson L. E., Elliott D. (2008). "Kinematic analysis of goal-directed aims made against early and late perturbations: an investigation of the relative influence of two online control processes", Hum. Mov. Sci. Vol 27, 839856. [Crossref]
20. Grierson L. E., Elliott D. (2009). "Goal-directed aiming and the relative contribution of two online control processes", Am. J. Psychol. Vol 122, 309324.
21. Heath M. (2005). "Role of limb and target vision in the online control of memory-guided reaches", Mot. Control Vol 9, 281309. [Crossref]
22. Kennedy A., Bhattacharjee A., Hansen S., Reid C., Tremblay L. (2015). "Online vision as a function of real-time limb velocity: another case for optimal windows", J. Mot. Behav. Vol 47, 465475. [Crossref]
23. Khan M. A., Franks I. M. (2003). "Online versus offline processing of visual feedback in the production of component submovements", J. Mot. Behav. Vol 35, 285295. [Crossref]
24. Milgram P. (1987). "A spectacle-mounted liquid-crystal tachistoscope", Behav. Res. Methods Instrum. Comput. Vol 19, 449456. [Crossref]
25. Polit A., Bizzi E. (1978). "Processes controlling arm movements in monkeys", Science Vol 201, 12351237. [Crossref]
26. Polit A., Bizzi E. (1979). "Characteristics of motor programs underlying arm movements in monkeys", J. Neurophysiol. Vol 42, 183194. [Crossref]
27. Proteau L., Roujoula A., Messier J. (2009). "Evidence for continuous processing of visual information in a manual video-aiming task", J. Mot. Behav. Vol 41, 219231. [Crossref]
28. Redon C., Hay L., Velay J. L. (1991). "Proprioceptive control of goal-directed movements in man, studied by means of vibratory muscle tendon stimulation", J. Mot. Behav. Vol 23, 101108. [Crossref]
29. Ribot-Ciscar E., Rossi-Durand C., Roll J. P. (1998). "Muscle spindle activity following muscle tendon vibration in man", Neurosci. Lett. Vol 258, 147150. [Crossref]
30. Rock I., Victor J. (1964). "Vision and touch: an experimentally created conflict between the two senses", Science Vol 143, 594596. [Crossref]
31. Roll J. P., Vedel J. P. (1982). "Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography", Exp. Brain Res. Vol 47, 177190. [Crossref]
32. Roll J. P., Vedel J. P., Ribot E. (1989). "Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study", Exp. Brain Res. Vol 76, 213222. [Crossref]
33. Rossetti Y., Desmurget M., Prablanc C. (1995). "Vectorial coding of movement: vision, proprioception, or both?" J. Neurophysiol. Vol 74, 457463. [Crossref]
34. Sainburg R. L., Poizner H., Ghez C. (1993). "Loss of proprioception produces deficits in interjoint coordination", J. Neurophysiol. Vol 70, 21362147. [Crossref]
35. Salmoni A. W., Schmidt R. A., Walter C. B. (1984). "Knowledge of results and motor learning: a review and critical reappraisal", Psychol. Bull. Vol 95, 355. [Crossref]
36. Sarlegna F. R., Mutha P. K. (2015). "The influence of visual target information on the online control of movements", Vision Res. Vol 110, 144154. [Crossref]
37. Sarlegna F. R., Gauthier G. M., Bourdin C., Vercher J. L., Blouin J. (2006). "Internally driven control of reaching movements: a study on a proprioceptively deafferented subject", Brain Res. Bull. Vol 69, 404415. [Crossref]
38. Saunders J. A., Knill D. C. (2003). "Humans use continuous visual feedback from the hand to control fast reaching movements", Exp. Brain Res. Vol 152, 341352. [Crossref]
39. Scott S. H., Cluff T., Lowrey C., Takei T. (2015). "Feedback control during voluntary motor actions", Curr. Opin. Neurobiol. Vol 33, 8594. [Crossref]
40. Sober S. J., Sabes P. N. (2003). "Multisensory integration during motor planning", J. Neurosci. Vol 23, 69826992.
41. Tremblay L., de Grosbois J. (2015). "Why encode limb and body displacements in the velocity domain? Neurophysiological and behavioral evidence", in: Advances in Visual Perception Research, Heinen T. (Ed.), pp.  279292. Nova Science Publishers, Hauppauge, NY, USA.
42. Tremblay L., Proteau L. (1998). "Specificity of practice: the case of powerlifting", Res. Q. Exercise Sport Vol 69, 284289. [Crossref]
43. Tremblay L., Hansen S., Kennedy A., Cheng D. T. (2013). "The utility of vision during action: multiple visuomotor processes?" J. Mot. Behav. Vol 45, 9199. [Crossref]
44. Tremblay L., Crainic V. A., de Grosbois J., Bhattacharjee A., Kennedy A., Hansen S., Welsh T. N. (2017). "An optimal velocity for online limb–target regulation processes?" Exp. Brain Res. Vol 235, 2940. [Crossref]
45. Wallace S. A., Newell K. M. (1983). "Visual control of discrete aiming movements", Q. J. Exp. Psychol. Vol 35, 311321. [Crossref]
46. Wolpert D. M., Ghahramani Z. (2000). "Computational principles of movement neuroscience", Nat. Neurosci. Vol 3, 12121217. [Crossref]
47. Woodworth R. S. (1899). "Accuracy of voluntary movement", Psychol. Rev. Vol 3, 1114.
http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-00002615
Loading

Article metrics loading...

/content/journals/10.1163/22134808-00002615
2018-01-19
2018-06-21

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation