Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Full Access On pitch-elevation mapping. Nature, nurture and behaviour

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

On pitch-elevation mapping. Nature, nurture and behaviour

  • HTML
  • PDF
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

The association between auditory pitch and spatial elevation is one the most fascinating examples of cross-dimensional mappings: in a wide range of cognitive, perceptual, attentional and linguistic tasks, humans consistently display a positive, sometimes absolute, association between auditory pitch and spatial elevation. However, the origins of such a pervasive mapping are still largely unknown. Through a combined analysis of environmental sounds and anthropometric measures, we demonstrate that, statistically speaking, this mapping is already present in both the distal and the proximal stimulus. Specifically, in the environment, high sounds are more likely to come from above; moreover, due to the filtering properties of the external ear, sounds coming from higher elevations have more energy at high frequencies. Next, we investigated whether the internalized mapping depends on the statistics of the proximal, or of the distal stimulus. In a psychophysical task, participants had to localize narrow band-pass noises with different central frequencies, while head- and world-centred reference frames were put into conflict by tilting participants’ body orientation. The frequency of the sounds systematically biased localization in both head- and world-centred coordinates, and, remarkably, in agreement with the mappings measured in both the distal and proximal stimulus. These results clearly demonstrate that the cognitive mapping between pitch and elevation mirror the statistical properties of the auditory signals. We argue that, in a shorter time-scale, humans learn the statistical properties auditory signals; while, in a longer timescale, the evolution of the acoustic properties of the external ear itself is shaped by the statistics of the acoustic environment.

Affiliations: 1: 2Department of Cognitive Neuroscience, University of Bielefeld, Germany

The association between auditory pitch and spatial elevation is one the most fascinating examples of cross-dimensional mappings: in a wide range of cognitive, perceptual, attentional and linguistic tasks, humans consistently display a positive, sometimes absolute, association between auditory pitch and spatial elevation. However, the origins of such a pervasive mapping are still largely unknown. Through a combined analysis of environmental sounds and anthropometric measures, we demonstrate that, statistically speaking, this mapping is already present in both the distal and the proximal stimulus. Specifically, in the environment, high sounds are more likely to come from above; moreover, due to the filtering properties of the external ear, sounds coming from higher elevations have more energy at high frequencies. Next, we investigated whether the internalized mapping depends on the statistics of the proximal, or of the distal stimulus. In a psychophysical task, participants had to localize narrow band-pass noises with different central frequencies, while head- and world-centred reference frames were put into conflict by tilting participants’ body orientation. The frequency of the sounds systematically biased localization in both head- and world-centred coordinates, and, remarkably, in agreement with the mappings measured in both the distal and proximal stimulus. These results clearly demonstrate that the cognitive mapping between pitch and elevation mirror the statistical properties of the auditory signals. We argue that, in a shorter time-scale, humans learn the statistical properties auditory signals; while, in a longer timescale, the evolution of the acoustic properties of the external ear itself is shaped by the statistics of the acoustic environment.

Loading

Full text loading...

/deliver/22134808/26/10/22134808_026_00_S143_text.html;jsessionid=JsDrYrihQK14R3Uc8A4k40y6.x-brill-live-03?itemId=/content/journals/10.1163/22134808-000s0143&mimeType=html&fmt=ahah
/content/journals/10.1163/22134808-000s0143
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-000s0143
Loading
Loading

Article metrics loading...

/content/journals/10.1163/22134808-000s0143
2013-05-16
2016-12-07

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation