Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Still no Evidence for Sustained Effects of Multisensory Integration of Duration

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

In studies on temporal order perception, immediate as well as sustained effects of multisensory integration have been demonstrated repeatedly. Regarding duration perception, the corresponding literature reports clear immediate effects of multisensory integration, but evidence on sustained effects of multisensory duration integration is scarce. In fact, a single study [Heron, J. et al. (2013). A neural hierarchy for illusions of time: Duration adaptation precedes multisensory integration, J. Vis. 13, 1–12.] investigated adaptation to multisensory conflicting intervals, and found no sustained effects of the audiovisual conflict on perceived duration of subsequently presented unimodal visual intervals. In two experiments, we provide independent evidence in support of this finding. In Experiment 1, we demonstrate that adaptation to audiovisual conflict does not alter perceived duration of subsequently presented visual test intervals. Thus, replicating the results of Heron et al. (2013), we observed no sustained effect of multisensory duration integration. However, one might argue that the prolonged exposure to consistent multisensory conflict might have prevented or hampered multisensory integration per se. In Experiment 2, we rule out this alternative explanation by showing that multisensory integration of audiovisual conflicting intervals is still effective after exposure to audiovisual conflict. This further strengthens the conclusion that multisensory integration of interval duration affects perception in an immediate, but not in a sustained manner.

Affiliations: 1: University of Tübingen, Germany

*To whom correspondence should be addressed. E-mail: maria-dolores.de-la-rosa-gamiz@uni-tuebingen.de
Loading

Full text loading...

/content/journals/10.1163/22134808-18001296
Loading

Data & Media loading...

1. Asaoka R., Gyoba J. (2016). "Sounds modulate the perceived duration of visual stimuli via crossmodal integration", Multisens. Res. Vol 29, 319335. [Crossref]
2. Bausenhart K. M., De la Rosa M. D., Ulrich R. (2014). "Multimodal integration of time: visual and auditory contributions to perceived duration and sensitivity", Exp. Psychol. Vol 61, 310322. [Crossref]
3. Bausenhart K. M., Bratzke D., Ulrich R. (2016). "Formation and representation of temporal reference information", Curr. Opin. Behav. Sci. Vol 8, 4652. [Crossref]
4. Bertelson P., Aschersleben G. (2003). "Temporal ventriloquism: crossmodal interaction on the time dimension. 1. Evidence from auditory–visual temporal order judgment", Int. J. Psychophysiol. Vol 50, 147155. [Crossref]
5. Brainard D. H. (1997). "The psychophysics toolbox", Spat. Vis. Vol 10, 433436. [Crossref]
6. Chen K. M., Yeh S. L. (2009). "Asymmetric cross-modal effects in time perception", Acta Psychol. Vol 130, 225234. [Crossref]
7. Chen L., Vroomen J. (2013). "Intersensory binding across space and time: a tutorial review", Atten. Percept. Psychophys. Vol 75, 790811. [Crossref]
8. Chen Y., Huang X., Luo Y., Peng C., Liu C. (2010). "Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task", Brain Res. Vol 1325, 100111. [Crossref]
9. De la Rosa M. D., Bausenhart K. M. (2013). "Multimodal integration of interval duration: temporal ventriloquism or changes in pacemaker rate?", Timing Time Percept. Vol 1, 189215. [Crossref]
10. Di Luca M., Machulla T. K., Ernst M. O. (2009). "Recalibration of multisensory simultaneity: cross-modal transfer coincides with a change in perceptual latency", J. Vis. Vol 9, 7. DOI:10.1167/9.12.7.
11. Dyjas O., Bausenhart K. M., Ulrich R. (2014). "Effects of stimulus order on duration discrimination sensitivity are under attentional control", J. Exp. Psychol. Hum. Percept. Perform. Vol 40, 292307. [Crossref]
12. Ernst M. O., Banks M. S. (2002). "Humans integrate visual and haptic information in a statistically optimal fashion", Nature Vol 415(6870), 429433. [Crossref]
13. Fujisaki W., Shimojo S., Kashino M., Nishida S. (2004). "Recalibration of audiovisual simultaneity", Nat. Neurosci. Vol 7, 773778. [Crossref]
14. Getzmann S. (2007). "The effect of brief auditory stimuli on visual apparent motion", Perception Vol 36, 10891103. [Crossref]
15. Gibbon J. (1977). "Scalar expectancy theory and Weber’s law in animal timing", Psychol. Rev. Vol 84, 279325. [Crossref]
16. Gibbon J., Church R. M., Meck W. H. (1984). "Scalar timing in memory", Ann. N. Y. Acad. Sci. Vol 423(1), 5277. [Crossref]
17. Grondin S., Ivry R. B., Franz E., Perreault L., Metthé L. (1996). "Markers’ influence on the duration discrimination of intermodal intervals", Percept. Psychophys. Vol 58, 424433. [Crossref]
18. Hanson J. V. M., Heron J., Whitaker D. (2008). "Recalibration of perceived time across sensory modalities", Exp. Brain Res. Vol 185, 347352. [Crossref]
19. Harrar V., Harris L. R. (2008). "The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity", Exp. Brain Res. Vol 186, 517524. [Crossref]
20. Hartcher-O’Brien J., Di Luca M., Ernst M. O. (2014). "The duration of uncertain times: audiovisual information about intervals is integrated in a statistically optimal fashion", PLoS One Vol 9, e89339. DOI:10.1371/journal.pone.0089339.
21. Heron J., Whitaker D., McGraw P. V., Horoshenkov K. V. (2007). "Adaptation minimizes distance-related audiovisual delays", J. Vis. Vol 7(5), 18. DOI:10.1167/7.13.5.
22. Heron J., Roach N. W., Whitaker D., Hanson J. V. M. (2010). "Attention regulates the plasticity of multisensory timing", Eur. J. Neurosci. Vol 31, 17551762. [Crossref]
23. Heron J., Aaen-Stockdale C., Hotchkiss J., Roach N. W., McGraw P. V., Whitaker D. (2012). "Duration channels mediate human time perception", Proc. R. Soc. B Biol. Sci. Vol 279(1729), 690698. [Crossref]
24. Heron J., Hotchkiss J., Aaen-Stockdale C., Roach N. W., Whitaker D. (2013). "A neural hierarchy for illusions of time: duration adaptation precedes multisensory integration", J. Vis. Vol 13, 4. DOI:10.1167/13.14.4.
25. Keetels M., Vroomen J. (2007). "No effect of auditory-visual spatial disparity on temporal recalibration", Exp. Brain Res. Vol 182, 559565. [Crossref]
26. Keetels M., Stekelenburg J., Vroomen J. (2007). "Auditory grouping occurs prior to intersensory pairing: evidence from temporal ventriloquism", Exp. Brain Res. Vol 180, 449456. [Crossref]
27. Kleiner M., Brainard D. H., Pelli D. G., Broussard C., Wolf T., Niehorster D. (2007). "What’s new in Psychtoolbox-3?", Perception Vol 36, 14. DOI:10.1068/v070821.
28. Klink P. C., Montijn J. S., van Wezel R. J. A. (2011). "Crossmodal duration perception involves perceptual grouping, temporal ventriloquism, and variable internal clock rates", Atten. Percep. Psychophys. Vol 73, 219236. [Crossref]
29. Machulla T. K., Di Luca M., Froehlich E., Ernst M. O. (2012). "Multisensory simultaneity recalibration: storage of the aftereffect in the absence of counterevidence", Exp. Brain Res. Vol 217, 8997. [Crossref]
30. Mahani M. A. N., Sheybani S., Bausenhart K. M., Ulrich R., Ahmadabadi M. N. (2017). "Multisensory perception of contradictory information in an environment of varying reliability: evidence for conscious perception and optimal causal inference", Sci. Rep. Vol 7, 3167. DOI:10.1038/s41598-017-03521-2. [Crossref]
31. Meredith M. A., Nemitz J. W., Stein B. E. (1987). "Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors", J. Neurosci. Vol 7, 32153229. [Crossref]
32. Morein-Zamir S., Soto-Faraco S., Kingstone A. (2003). "Auditory capture of vision: examining temporal ventriloquism", Cogn. Brain Res. Vol 17, 154163. [Crossref]
33. Morey R. D. (2008). "Confidence intervals from normalized data: a correction to Cousineau (2005)", Tutor. Quant. Methods Psychol. Vol 4, 6164. [Crossref]
34. Pelli D. G. (1997). "The VideoToolbox software for visual psychophysics: transforming numbers into movies", Spat. Vis. Vol 10, 437442. [Crossref]
35. Penton-Voak I. S., Edwards H., Percival A., Wearden J. H. (1996). "Speeding up an internal clock in humans? Effects of click trains on subjective duration", J. Exp. Psychol. Anim. Behav. Proc. Vol 22, 307320. [Crossref]
36. Powers A. R., Hillock A. R., Wallace M. T. (2009). "Perceptual training narrows the temporal window of multisensory binding", J. Neurosci. Vol 29, 1226512274. [Crossref]
37. Romei V., De Haas B., Mok R. M., Driver J. (2011). "Auditory stimulus timing influences perceived duration of co-occurring visual stimuli", Front. Psychol. Vol 2, 215. DOI:10.3389/fpsyg.2011.00215. [Crossref]
38. Rousseau R., Poirier J., Lemyre L. (1983). "Duration discrimination of empty time intervals marked by intermodal pulses", Percept. Psychophys. Vol 34, 541548. [Crossref]
39. Sarmiento B. R., Shore D. I., Milliken B., Sanabria D. (2012). "Audiovisual interactions depend on context of congruency", Atten. Percept. Psychophys. Vol 74, 563574. [Crossref]
40. Shi Z., Chen L., Müller H. J. (2010). "Auditory temporal modulation of the visual Ternus effect: the influence of time interval", Exp. Brain Res. Vol 203, 723735. [Crossref]
41. Spence C., Squire S. (2003). "Multisensory integration: maintaining the perception of synchrony", Curr. Biol. Vol 13, 519521. [Crossref]
42. Ulrich R., Nitschke J., Rammsayer T. (2006). "Crossmodal temporal discrimination: assessing the predictions of a general pacemaker-counter model", Percept. Psychophys. Vol 68, 11401152. [Crossref]
43. Vatakis A., Navarra J., Soto-Faraco S., Spence C. (2007). "Temporal recalibration during asynchronous audiovisual speech perception", Exp. Brain Res. Vol 181, 173181. [Crossref]
44. Vroomen J., de Gelder B. (2004). "Temporal ventriloquism: sound modulates the flash-lag effect", J. Exp. Psychol. Hum. Percept. Perform. Vol 30, 513518. [Crossref]
45. Vroomen J., Keetels M. (2009). "Sounds change four-dot masking", Acta Psychol. Vol 130, 5863. [Crossref]
46. Vroomen J., Keetels M., De Gelder B., Bertelson P. (2004). "Recalibration of temporal order perception by exposure to audio-visual asynchrony", Cogn. Brain Res. Vol 22, 3235. [Crossref]
47. Walker J. T., Scott K. J. (1981). "Auditory-visual conflicts in the perceived duration of lights, tones and gaps", J. Exp. Psychol. Hum. Percept. Perform. Vol 7, 13271339. [Crossref]
48. Walker J. T., Irion A. L., Gordon D. G. (1981). "Simple and contingent aftereffects of perceived duration in vision and audition", Atten. Percept. Psychophys. Vol 29, 475486. [Crossref]
49. Wearden J. H., Edwards H., Fakhri M., Percival A. (1998). "Why “sounds are judged longer than lights”: application of a model of the internal clock in humans", Q. J. Exp. Psychol. B Vol 51, 97120.
50. Wearden J. H., Norton R., Martin S., Montford-Bebb O. (2007). "Internal clock processes and the filled-duration illusion", J. Exp. Psychol. Hum. Percept. Perform. Vol 33, 716729. [Crossref]
51. Welch R. B., Warren D. H. (1980). "Immediate perceptual response to intersensory discrepancy", Psychol. Bull. Vol 88, 638667. [Crossref]
52. Witten I. B., Knudsen E. I. (2005). "Why seeing is believing: merging auditory and visual worlds", Neuron Vol 48, 489496. [Crossref]
53. Zaidel A., Turner A. H., Angelaki D. E. (2011). "Multisensory calibration is independent of cue reliability", J. Neurosci. Vol 31, 1394913962. [Crossref]
54. Zaidel A., Ma W., Angelaki D. E. (2013). "Supervised calibration relies on the multisensory percept", Neuron Vol 80, 15441557. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-18001296
Loading

Article metrics loading...

/content/journals/10.1163/22134808-18001296
2018-05-09
2018-06-20

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation