Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Cybersickness: a Multisensory Integration Perspective

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

In the past decade, there has been a rapid advance in Virtual Reality (VR) technology. Key to the user’s VR experience are multimodal interactions involving all senses. The human brain must integrate real-time vision, hearing, vestibular and proprioceptive inputs to produce the compelling and captivating feeling of immersion in a VR environment. A serious problem with VR is that users may develop symptoms similar to motion sickness, a malady called cybersickness. At present the underlying cause of cybersickness is not yet fully understood. Cybersickness may be due to a discrepancy between the sensory signals which provide information about the body’s orientation and motion: in many VR applications, optic flow elicits an illusory sensation of motion which tells users that they are moving in a certain direction with certain acceleration. However, since users are not actually moving, their proprioceptive and vestibular organs provide no cues of self-motion. These conflicting signals may lead to sensory discrepancies and eventually cybersickness. Here we review the current literature to develop a conceptual scheme for understanding the neural mechanisms of cybersickness. We discuss an approach to cybersickness based on sensory cue integration, focusing on the dynamic re-weighting of visual and vestibular signals for self-motion.

Affiliations: 1: Department of Psychology, Royal Holloway University of London, Egham, UK

*To whom correspondence should be addressed. E-mail: E.Ferre@rhul.ac.uk
Loading

Full text loading...

/content/journals/10.1163/22134808-20181293
Loading

Data & Media loading...

1. Akiduki H., Nishiike S., Watanabe H., Matsuoka K., Kubo T., Takeda N. (2003). "Visual–vestibular conflict induced by virtual reality in humans", Neuroscience Letters Vol 340(3), 197200. DOI:10.1016/S0304-3940(03)00098-3. [Crossref]
2. Alaker M., Wynn G. R., Arulampalam T. (2016). "Virtual reality training in laparoscopic surgery: a systematic review & meta-analysis", International Journal of Surgery Vol 29, 8594. DOI:10.1016/j.ijsu.2016.03.034. [Crossref]
3. Angelaki D. E., Gu Y., Deangelis G. C. (2011). "Visual and vestibular cue integration for heading perception in extrastriate visual cortex", Journal of Physiology Vol 589(4), 825833. DOI:10.1113/jphysiol.2010.194720. [Crossref]
4. Arns L. L., Cerney M. M. (2005). "The relationship between age and incidence of cybersickness among immersive environment users", in: Proceedings of the IEEE Virtual Reality 2005, pp.  267268. DOI:10.1109/VR.2005.1492788. [Crossref]
5. Ash A., Palmisano S. (2012). "Vection during conflicting multisensory information about the axis, magnitude, and direction of self-motion", Perception Vol 41(3), 253267. DOI:10.1068/p7129. [Crossref]
6. Ash A., Palmisano S., Kim J. (2011). "Vection in depth during consistent and inconsistent multisensory stimulation", Perception Vol 40(2), 155174. DOI:10.1068/p6837. [Crossref]
7. Azmandian M., Hancock M., Benko H., Ofek E., Wilson A. D. (2016). "Haptic retargeting: dynamic repurposing of passive haptics for enhanced virtual reality experiences", in: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems — CHI’16, pp.  19681979. DOI:10.1145/2858036.2858226.
8. Balter S. G. T., Stokroos R. J., Van De Laar M. M. M., Hendrice N., Kingma H. (2004). "Habituation to galvanic vestibular stimulation for analysis of susceptibility to carsickness", Acta Oto-Laryngologica Vol 124(6), 690694. DOI:10.1080/00016480410017242. [Crossref]
9. Barlow H. B., Hill R. M. (1963). "Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects", Nature Vol 200, 13451347. [Crossref]
10. Barra J., Marquer A., Joassin R., Reymond C., Metge L., Chauvineau V., Pérennou D. (2010). "Humans use internal models to construct and update a sense of verticality", Brain Vol 133(12), 35523563. DOI:10.1093/brain/awq311. [Crossref]
11. Barrett J. (2004). Side effects of virtual environments: a review of the literature. Available at: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA426109.
12. Bastug E. , et al, (2017). "Toward interconnected virtual reality: opportunities, challenges, and enablers", IEEE Communications Magazine Vol 55(6), 110117. [Crossref]
13. Bellini H., Chen W., Sugiyama M., Shin M., Alam S., Takayama D. (2016). Virtual & augmented reality: understanding the race for the next computing platform, Profiles in Innovation.
14. Bense S., Stephan T., Yousry T. A., Brandt T., Dieterich M. (2001). "Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI)", Journal of Neurophysiology Vol 85(2), 886899. [Crossref]
15. Berthoz A., Israël I., Georges-François P., Grasso R., Tsuzuku T. (1995). "Spatial memory of body linear displacement: what is being stored?", Science Vol 269(5220), 9598. [Crossref]
16. Bles W., Bos J. E., De Graaf B., Groen E., Wertheim A. H. (1998). "Motion sickness: only one provocative conflict?", Brain Research Bulletin Vol 47(5), 481487. DOI:10.1016/S0361-9230(98)00115-4. [Crossref]
17. Bonato F., Bubka A., Palmisano S. (2009). "Combined pitch and roll and cybersickness in a virtual environment", Aviation, Space, and Environmental Medicine Vol 80(11), 941945. DOI:10.3357/ASEM.2394.2009. [Crossref]
18. Bos J. E., Bles W., Groen E. L. (2008). "A theory on visually induced motion sickness", Displays Vol 29(2), 4757. DOI:10.1016/j.displa.2007.09.002. [Crossref]
19. Brandt T., Bartenstein P., Janek A., Dieterich M. (1998). "Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex", Brain Vol 121(9), 17491758. DOI:10.1093/brain/121.9.1749. [Crossref]
20. Bremmer F., Klam F., Duhamel J.-R., Ben Hamed S., Graf W. (2002). "Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP)", The European Journal of Neuroscience Vol 16(8), 15691586. [Crossref]
21. Butler J. S., Smith S. T., Campos J. L., Bülthoff H. H. (2010). "Bayesian integration of visual and vestibular signals for heading", Journal of Vision Vol 10(11), 23. DOI:10.1167/10.11.23. [Crossref]
22. Cameirão M., Bermúdez i Badia S., Duarte E., Verschure P. F. M. J. (2011). "Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the Rehabilitation Gaming System", Restorative Neurology and Neuroscience Vol 29, 287298. DOI:10.3233/RNN-2011-0599.
23. Cameirão M. S., Badia S. B. I., Duarte E., Frisoli A., Verschure P. F. M. J. (2012). "The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke", Stroke Vol 43(10), 27202728. DOI:10.1161/STROKEAHA.112.653196. [Crossref]
24. Cevette M. J., Stepanek J., Cocco D., Galea A. M., Pradhan G. N., Wagner L. S., Oakley S. R., Smith B. E., Zapala D. A., Brookler K. H. (2012). "Oculo–vestibular recoupling using galvanic vestibular stimulation to mitigate simulator sickness", Aviation, Space, and Environmental Medicine Vol 83(6), 549555. DOI:10.3357/ASEM.3239.2012. [Crossref]
25. Chance S. S., Gaunet F., Beall A. C., Loomis J. M. (1998). "Locomotion mode affects the updating of objects encountered during travel: the contribution of vestibular and proprioceptive inputs to path integration", Presence: Teleoperators and Virtual Environments Vol 7(2), 168178. DOI:10.1162/105474698565659. [Crossref]
26. Chang E., Hwang I., Jeon H., Chun Y., Kim H. T., Park C. (2013). "Effects of rest frames on cybersickness and oscillatory brain activity", in: 2013 International Winter Workshop on Brain–Computer Interface, BCI 2013, pp.  6264. DOI:10.1109/IWW-BCI.2013.6506631. [Crossref]
27. Chen A., DeAngelis G. C., Angelaki D. E. (2010). "Macaque parieto-insular vestibular cortex: responses to self-motion and optic flow", Journal of Neuroscience: the Official Journal of the Society for Neuroscience Vol 30(8), 30223042. DOI:10.1523/JNEUROSCI.4029-09.2010. [Crossref]
28. Chen D. J., Bao B., Zhao Y., So R. H. Y. (2015). "Visually induced motion sickness when viewing visual oscillations of different frequencies along the fore-and-aft axis: keeping velocity versus amplitude constant", Ergonomics Vol 59(4), 582590. DOI:10.1080/00140139.2015.1078501. [Crossref]
29. Chen W., Chao J. G., Chen X. W., Wang J. K., Tan C. (2015). "Quantitative orientation preference and susceptibility to space motion sickness simulated in a virtual reality environment", Brain Research Bulletin Vol 113, 1726. DOI:10.1016/j.brainresbull.2015.01.007. [Crossref]
30. Cheung B. S., Howard I. P., Money K. E. (1991). "Visually-induced sickness in normal and bilaterally labyrinthine-defective subjects", Aviation, Space, and Environmental Medicine Vol 62(6), 527531.
31. Clemes S. A., Howarth P. A. (2005). "The menstrual cycle and susceptibility to virtual simulation sickness", Journal of Biological Rhythms Vol 20(1), 7182. DOI:10.1177/0748730404272567. [Crossref]
32. Clower D. M., Hoffman J. M., Votaw J. R., Faber T. L., Woods R. P., Alexander G. E. (1996). "Role of posterior parietal cortex in the recalibration of visually guided reaching", Nature Vol 383, 618621. DOI:10.1038/383618a0. [Crossref]
33. Cobb S. V. G., Nichols S., Ramsey A., Wilson J. R. (1999). "Virtual reality-induced symptoms and effects (VRISE)", Presence: Teleoperators and Virtual Environments Vol 8(2), 169186. DOI:10.1162/105474699566152. [Crossref]
34. Davis S., Nesbitt K., Nalivaiko E. (2014). "A systematic review of cybersickness", in: Proceedings of the 2014 Conference on Interactive Entertainment — IE2014, pp.  19. DOI:10.1145/2677758.2677780.
35. Davis S., Nesbitt K., Nalivaiko E. (2015). "Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters", in: 11th Australasian Conference on Interactive Entertainment — IE 2015, pp.  2730. DOI:10.17973/MMSJ.2015.
36. de Winkel K. N., Soyka F., Barnett-Cowan M., Bülthoff H. H., Groen E. L., Werkhoven P. J. (2013). "Integration of visual and inertial cues in the perception of angular self-motion", Experimental Brain Research Vol 231(2), 209218. DOI:10.1007/s00221-013-3683-1. [Crossref]
37. de Winkel K. N., Weesie J., Werkhoven P. J., Groen E. L. (2010). "Integration of visual and inertial cues in perceived heading of self-motion", Journal of Vision Vol 10(12), 1. DOI:10.1167/10.12.1.
38. Dennison M. S., D’Zmura M. (2017). "Cybersickness without the wobble: experimental results speak against postural instability theory", Applied Ergonomics Vol 58, 215223. DOI:10.1016/j.apergo.2016.06.014. [Crossref]
39. Dennison M. S., Wisti A. Z., D’Zmura M. (2016). "Use of physiological signals to predict cybersickness", Displays Vol 44, 4252. DOI:10.1016/j.displa.2016.07.002. [Crossref]
40. Deutschländer A., Bense S., Stephan T., Schwaiger M., Brandt T., Dieterich M. (2002). "Sensory system interactions during simultaneous vestibular and visual stimulation in PET", Human Brain Mapping Vol 16(2), 92103. [Crossref]
41. Di Girolamo S., Pic P. (2001). "Vestibulo–ocular reflex modification after virtual environment exposure", Acta Oto-Laryngologica Vol 121(2), 211215. DOI:10.1080/000164801300043541. [Crossref]
42. Ernst M. O., Banks M. S. (2002). "Humans integrate visual and haptic information in a statistically optimal fashion", Nature Vol 415(6870), 429433. DOI:10.1038/415429a. [Crossref]
43. Ernst M. O., Bülthoff H. H. (2004). "Merging the senses into a robust percept", Trends in Cognitive Sciences Vol 8(4), 162169. DOI:10.1016/j.tics.2004.02.002. [Crossref]
44. Fasold O., von Brevern M., Kuhberg M., Ploner C. J., Villringer A., Lempert T., Wenzel R. (2002). "Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging", NeuroImage Vol 17(3), 13841393. DOI:10.1006/nimg.2002.1241. [Crossref]
45. Ferrè E. R., Haggard P. (2015). "Vestibular–somatosensory interactions: a mechanism in search of a function?", Multisensory Research Vol 28(5–6), 559579. [Crossref]
46. Fetsch C. R., Deangelis G. C., Angelaki D. E. (2010). "Visual–vestibular cue integration for heading perception: applications of optimal cue integration theory", The European Journal of Neuroscience Vol 31(10), 17211729. DOI:10.1038/jid.2014.371. [Crossref]
47. Fetsch C. R., Turner A. H., DeAngelis G. C., Angelaki D. E. (2009). "Dynamic reweighting of visual and vestibular cues during self-motion perception", Journal of Neuroscience: the Official Journal of the Society for Neuroscience Vol 29(49), 1560115612. DOI:10.1523/JNEUROSCI.2574-09.2009. [Crossref]
48. Fiore L. P., Coben E., Merritt S., Liu P., Interrante V. (2013). "Towards enabling more effective locomotion in VR using a wheelchair-based motion platform", in: Proceedings of the 5th Joint Virtual Reality Conference, pp.  8390. DOI:10.2312/EGVE.JVRC13.083-090.
49. Flanagan M. B., May J. G., Dobie T. G. (2005). "Sex differences in tolerance to visually-induced motion sickness", Aviation, Space, and Environmental Medicine Vol 76(7), 642646.
50. Galvez-Garcia G., Hay M., Gabaude C. (2015). "Alleviating simulator sickness with galvanic cutaneous stimulation", Human Factors Vol 57(4), 649657. DOI:10.1177/0018720814554948. [Crossref]
51. Gibson J. J. (1950). "The perception of visual surfaces", American Journal of Psychology Vol 63(3), 367384. [Crossref]
52. Golding J. (2016). "Motion sickness", in: Handbook of Clinical Neurology, Vol Vol. 137, pp.  371390. Elsevier B.V., Amsterdam. DOI:10.1016/B978-0-444-63437-5.00027-3.
53. Golding J. F., Kadzere P., Gresty M. A. (2005). "Motion sickness susceptibility fluctuates through the menstrual cycle", Aviation, Space, and Environmental Medicine Vol 76(10), 970973. DOI:10.1196/annals.1429.018.
54. Gower D. W., Fowlkes J. E. (1989). Simulator sickness in the UH-60 (Black Hawk) flight simulator, USAARL 89-20 (AD-A214 434), U.S. Army Aeromedical Research Laboratory.
55. Green A. M., Angelaki D. E. (2010). "Multisensory integration: resolving sensory ambiguities to build novel representations", Current Opinion in Neurobiology Vol 20(3), 353360. DOI:10.1016/j.conb.2010.04.009. [Crossref]
56. Greenlee M. W., Frank S. M., Kaliuzhna M., Blanke O., Bremmer F., Churan J., Cuturi L. F., MacNeilage P. R., Smith A. T. (2016). "Multisensory integration in self motion perception", Multisensory Research Vol 29(6–7), 525556. DOI:10.1163/22134808-00002527. [Crossref]
57. Greybeil A. (1970). "Susceptibility to acute motion sickness in blind persons", Aerospace Medicine Vol 41(6), 650653.
58. Gu Y., Angelaki D. E., DeAngelis G. C. (2008). "Neural correlates of multisensory cue integration in macaque MSTd", Nature Neuroscience Vol 11(10), 12011210. DOI:10.1038/nn.2191. [Crossref]
59. Guldin W. O., Grüsser O. J. (1998). "Is there a vestibular cortex?", Trends in Neurosciences Vol 21(6), 254259. DOI:10.1016/S0166-2236(97)01211-3. [Crossref]
60. Han K., Park C., Kim E., Kim D., Woo S., Jeong J., Hwang I., Kim H. (2011). "Effects of different types of 3D rest frames on reducing cybersickness in a virtual environment", i-Perception Vol 2(8), 861. DOI:10.1068/ic861. [Crossref]
61. Harm D. L., Taylor L. C., Reschke M. F., Somers J. T., Bloomberg J. J. (2008). "Sensorimotor coordination aftereffects of exposure to a virtual environment", Visual Computer Vol 24(11), 995999. DOI:10.1007/s00371-008-0277-1. [Crossref]
62. Harsora J., Khanvilkar A., Sayyad M., Road M. (2017). "A systematic literature review on virtual reality — the Oculus Rift", International Journal of Research in Science and Engineering Special Issue 7 , 3543.
63. Herbelin B., Salomon R., Serino A., Blanke O. (2015). "Neural mechanisms of bodily self-consciousness and the experience of presence in virtual reality", in: Human–Computer Confluence, pp.  8096. DOI:10.1515/9783110471137-005.
64. Hill K. J., Howarth P. A. (2000). "Habituation to the side effects of immersion in a virtual environment", Displays Vol 21(1), 2530. DOI:10.1016/S0141-9382(00)00029-9. [Crossref]
65. Howarth P. A., Hodder S. G. (2008). "Characteristics of habituation to motion in a virtual environment", Displays Vol 29(2), 117123. DOI:10.1016/j.displa.2007.09.009. [Crossref]
66. Hsu C. , et al, (2017). "Is foveated rendering perceivable in virtual reality? Exploring the efficiency and consistency of ality assessment methods", in: Proceedings of the 2017 ACM on Multimedia Conference — MM’17, pp.  5563. Available at: http://dirl.iis.sinica.edu.tw/pub/hsu17_is_foveated_rendering_perceivable.pdf. [Crossref]
67. Israël I., Berthoz A. (1989). "Contribution of the otoliths to the calculation of linear displacement", Journal of Neurophysiology Vol 62(1), 247263. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2754476 (accessed: 5 October 2017). [Crossref]
68. Israël I., Chapuis N., Glasauer S., Charade O., Berthoz A. (1993). "Estimation of passive horizontal linear whole-body displacement in humans", Journal of Neurophysiology Vol 70(3), 12701273. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8229174 (accessed: 5 October 2017). [Crossref]
69. Jürgens R., Kliegl K., Kassubek J., Becker W. (2016). "Optokinetic circular vection: a test of visual–vestibular conflict models of vection nascensy", Experimental Brain Research Vol 234(1), 6781. DOI:10.1007/s00221-015-4433-3. [Crossref]
70. Kaliuzhna M., Ferrè E. R., Herbelin B., Blanke O., Haggard P. (2016). "Multisensory effects on somatosensation: a trimodal visuo–vestibular–tactile interaction", Scientific Reports Vol 6, 26301. [Crossref]
71. Kato K., Kitazaki S. (2008). "Improvement of ease of viewing images on an in-vehicle display and reduction of carsickness", in: Human Factors in Driving, Seating Comfort and Automotive Telematics. DOI:10.4271/2008-01-0565.
72. Kellog R. S., Castore C., Coward R. (1980). "Psychophysiological effects of training in a full vision simulator", in: Annual Scientific Meeting of the Aerospace Medical Association.
73. Kennedy R. S., Berbaum K. S., Lilienthal M. G., Dunlap W. P., Mulligan B. E., Funaro J. F. (1987). Guidelines for alleviation of simulator sickness symptomatology. Naval Training Systems Center.
74. Kennedy R. S., Drexler J., Kennedy R. C. (2010). "Research in visually induced motion sickness", Applied Ergonomics Vol 41(4), 494503. DOI:10.1016/j.apergo.2009.11.006. [Crossref]
75. Kennedy R. S., Drexler J. M., Compton D. E., Stanney K. M., Lanham D. S., Harm D. L. (2003). "Configural scoring of simulator sickness, cybersickness and space adaptation syndrome: similarities and differences", in: Virtual and Adaptive Environments: Applications Implications and Human Performance Issues, pp.  247278. DOI:10.1201/9781410608888.ch12. [Crossref]
76. Kennedy R. S., Lane N. E., Berbaum K. S., Lilienthal M. G. (1993). "Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness", International Journal of Aviation Psychology Vol 3(3), 203220. [Crossref]
77. Kennedy R. S., Stanney K. M., Dunlap W. P. (2000). "Duration and exposure to virtual environments: sickness curves during and across sessions", Presence: Teleoperators and Virtual Environments Vol 9(5), 463472. [Crossref]
78. Keshavarz B. (2013). "Exploring behavioral methods to reduce visually induced motion sickness in virtual environments", in: 5th International Conference, VAMR 2013, Held as Part of HCI International 2013, p.  399. DOI:10.1007/978-3-642-39405-8.
79. Keshavarz B., Hecht H. (2011). "Axis rotation and visually induced motion sickness: the role of combined roll, pitch, and yaw motion", Aviation, Space, and Environmental Medicine Vol 82(11), 10231029. DOI:10.3357/ASEM.3078.2011. [Crossref]
80. Keshavarz B., Riecke B. E., Hettinger L. J., Campos J. L. (2015). "Vection and visually induced motion sickness: how are they related?", Frontiers in Psychology Vol 6, 472. DOI:10.3389/fpsyg.2015.00472.
81. Kim Y. Y., Kim E. N., Park M. J., Park K. S., Ko H. D., Kim H. T. (2008). "The application of biosignal feedback for reducing cybersickness from exposure to a virtual environment", Presence: Teleoperators and Virtual Environments Vol 17(1), 116. DOI:10.1162/pres.17.1.1. [Crossref]
82. Kim Y. Y., Kim H. T. J., Kim E. N., Ko H. D., Kim H. T. J. (2005). "Characteristic changes in the physiological components of cybersickness", Psychophysiology Vol 42(5), 616625. DOI:10.1007/s00234-005-1388-2.
83. Kim Y. Y., Kim H. T. J., Ko H. D., Kim H. T. J. (2001). "Psychophysiological changes by navigation in a virtual reality", Annual Reports of the Research Reactor Institute, Kyoto University Vol 4, 37733776. DOI:10.1109/IEMBS.2001.1019659.
84. Kinsella A., Mattfeld R., Muth E., Hoover A. (2016). "Frequency, not amplitude, of latency affects subjective sickness in a head-mounted display", Aerospace Medicine and Human Performance Vol 87(7), 604609. DOI:10.3357/AMHP.4351.2016. [Crossref]
85. Knill D. C., Pouget A. (2004). "The Bayesian brain: the role of uncertainty in neural coding and computation", Trends in Neurosciences Vol 27(12), 712719. DOI:10.1016/j.tins.2004.10.007. [Crossref]
86. Koslucher F., Haaland E., Stoffregen T. A. (2016). "Sex differences in visual performance and postural sway precede sex differences in visually induced motion sickness", Experimental Brain Research Vol 234(1), 313322. DOI:10.1007/s00221-015-4462-y. [Crossref]
87. Kushner D. (2016). Will virtual reality change your life?, Rolling Stone, May. Available at: http://www.rollingstone.com/culture/features/will-virtual-reality-change-your-life-20160523 (accessed: 10 July 2017).
88. Lackner J. R. (2014). "Motion sickness: more than nausea and vomiting", Experimental Brain Research Vol 232(8), 24932510. DOI:10.1007/s00221-014-4008-8. [Crossref]
89. LaViola J. J. (2000). "A discussion of cybersickness in virtual environments", ACM SIGCHI Bulletin Vol 32(1), 4756. DOI:10.1145/333329.333344. [Crossref]
90. Lee W.-T. , et al, (2017). "High-resolution 360 video foveated stitching for real-time VR", Computer Graphics Forum Vol 36(7), 115123. DOI:10.1111/cgf.13277. [Crossref]
91. Liu C. L. (2014). "A study of detecting and combating cybersickness with fuzzy control for the elderly within 3D virtual stores", International Journal of Human–Computer Studies Vol 72(12), 796804. DOI:10.1016/j.ijhcs.2014.07.002. [Crossref]
92. Llorach G., Evans A., Blat J. (2014). "Simulator sickness and presence using HMDs: comparing use of a game controller and a position estimation system", in: 20th ACM Symposium on Virtual Reality Software and Technology — VRST’14, pp.  137140. DOI:10.1145/2671015.2671120.
93. Lo W. T., So R. H. Y. (2001). "Cybersickness in the presence of scene rotational movements along different axes", Applied Ergonomics Vol 32, 114. DOI:10.1016/S0003-6870(00)00059-4. [Crossref]
94. Lopez C., Blanke O. (2011). "The thalamocortical vestibular system in animals and humans", Brain Research Reviews Vol 67(1–2), 119146. DOI:10.1016/j.brainresrev.2010.12.002. [Crossref]
95. Lopez C., Blanke O., Mast F. W. (2012). "The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis", Neuroscience Vol 212, 159179. DOI:10.1016/j.neuroscience.2012.03.028. [Crossref]
96. Merhi O., Faugloire E., Flanagan M., Stoffregen T. A. (2007). "Motion sickness, console video games, and head-mounted displays", Human Factors Vol 49(5), 920934. DOI:10.1518/001872007X230262. [Crossref]
97. Moss J. D., Austin J., Salley J., Coats J., Williams K., Muth E. R. (2011). "The effects of display delay on simulator sickness", Displays Vol 32(4), 159168. DOI:10.1016/j.displa.2011.05.010. [Crossref]
98. Munafo J., Diedrick M., Stoffregen T. A. (2017). "The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects", Experimental Brain Research Vol 235(3), 889901. DOI:10.1007/s00221-016-4846-7. [Crossref]
99. Nalivaiko E., Davis S. L., Blackmore K. L., Vakulin A., Nesbitt K. V. (2015). "Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time", Physiology and Behavior Vol 151, 583590. DOI:10.1016/j.physbeh.2015.08.043. [Crossref]
100. Nichols S. (2000). "Individual characteristics and experiences of virtual reality induced symptoms and effects", in: XIV Triennal Congress of the International Ergonomics Association and 44th Annual Meeting of the Human Factors and Ergonomics Society, Vol Vol. 1, pp.  538541. DOI:10.1177/154193120004400514.
101. Nishiike S., Okazaki S., Watanabe H., Akizuki H., Imai T., Uno A., Kitahara T., Horii A., Takeda N., Inohara H. (2013). "The effect of visual–vestibulosomatosensory conflict induced by virtual reality on postural stability in humans", Journal of Medical Investigation: JMI Vol 60(3–4), 236239. DOI:10.2152/jmi.60.236. [Crossref]
102. Oman C. M. (1988). "Motion sickness: a synthesis and evaluation of the sensory conflict theory", Canadian Journal of Physiology Pharmacology Vol 68, 294303. [Crossref]
103. Oman C. M. (2012). "Are evolutionary hypotheses for motion sickness ‘just-so’ stories?", Journal of Vestibular Research: Equilibrium and Orientation Vol 22(2–3), 117127. DOI:10.3233/VES-2011-0432.
104. Padmanaban N. , et al, (2017). "Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays", Proceedings of the National Academy of Sciences of the United States of America Vol 114(9), 21832188. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28193871. [Crossref]
105. Paillard A. C., Quarck G., Paolino F., Denise P., Paolino M., Golding J. F., Ghulyan-Bedikian V. (2013). "Motion sickness susceptibility in healthy subjects and vestibular patients: effects of gender, age and trait-anxiety", Journal of Vestibular Research: Equilibrium and Orientation Vol 23(4–5), 203210. DOI:10.3233/VES-130501.
106. Palmisano S., Allison R. S., Schira M. M., Barry R. J. (2015). "Future challenges for vection research: definitions, functional significance, measures, and neural bases", Frontiers in Psychology Vol 6, 193. DOI:10.3389/fpsyg.2015.00193. [Crossref]
107. Palmisano S., Mursic R., Kim J. (2017). "Vection and cybersickness generated by head-and-display motion in the Oculus Rift", Displays Vol 46, 18. DOI:10.1016/j.displa.2016.11.001. [Crossref]
108. Peck T. C., Fuchs H., Whitton M. C. (2011). "An evaluation of navigational ability comparing Redirected Free Exploration with Distractors to Walking-in-Place and joystick locomotio interfaces", in: Proceedings of the IEEE Virtual Reality, pp.  5562. DOI:10.1109/VR.2011.5759437.
109. Pelargos P. E., Nagasawa D. T., Lagman C., Tenn S., Demos J. V., Lee S. J., Bui T. T., Barnette N. E., Bhatt N. S., Ung N., Bari A., Martin N. A., Yang I. (2016). "Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery", Journal of Clinical Neuroscience Vol 35, 14. DOI:10.1016/j.jocn.2016.09.002. [Crossref]
110. Probst T., Straube A., Bles W. (1985). "Differential effects of ambivalent visual–vestibular–somatosensory stimulation on the perception of self-motion", Behavioural Brain Research Vol 16(1), 7179. DOI:10.1016/0166-4328(85)90083-X. [Crossref]
111. Prsa M., Gale S., Blanke O. (2012). "Self-motion leads to mandatory cue fusion across sensory modalities", Journal of Neurophysiology Vol 108(8), 22822291. DOI:10.1152/jn.00439.2012. [Crossref]
112. Reason J. T. (1978). "Motion sickness adaptation: a neural mismatch model", Journal of the Royal Society of Medicine Vol 71(11), 819829. DOI:10.1177/014107687807101109. [Crossref]
113. Reason J. T., Brand J. J. (1975). Motion Sickness. Academic Press, New York, NY.
114. Rebenitsch L., Owen C. (2014). "Individual variation in susceptibility to cybersickness", in: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pp.  309317. DOI:10.1145/2642918.2647394.
115. Rebenitsch L., Owen C. (2016). "Review on cybersickness in applications and visual displays", Virtual Reality Vol 20(2), 101125. DOI:10.1007/s10055-016-0285-9. [Crossref]
116. Redding G. M., Rossetti Y., Wallace B. (2005). "Applications of prism adaptation: a tutorial in theory and method", Neuroscience Biobehavioural Review Vol 29(3), 431444. [Crossref]
117. Reed-Jones R. J., Reed-Jones J. G., Trick L. M., Vallis L. A. (2007). "Can galvanic vestibular stimulation reduce simulator adaptation syndrome?", in: Proceedings of the Fourth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp.  534540. Available at: http://www.psychology.uoguelph.ca/faculty/trick/Documents/Articles/086_ReedJonesTrick.pdf. [Crossref]
118. Regan E. C. (1995). "Some evidence of adaptation to immersion in virtual reality", Displays Vol 16(3), 135139. DOI:10.1016/0141-9382(96)81213-3. [Crossref]
119. Riccio G. E., Stoffregen T. A. (1991). "An ecological theory of motion sickness and postural instability", Ecological Psychology Vol 3(3), 195240. [Crossref]
120. Riecke B. E., Bodenheimer B., McNamara T. P., Williams B., Peng P., Feuereissen D. (2010). "Do we need to walk for effective virtual reality navigation? Physical rotations alone may suffice", in: Spatial Cognition VII. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol Vol. 6222, pp.  234247. DOI:10.1007/978-3-642-14749-4_21. [Crossref]
121. Sharples S., Cobb S., Moody A., Wilson J. R. (2008). "Virtual reality induced symptoms and effects (VRISE): comparison of head mounted display (HMD), desktop and projection display systems", Displays Vol 29(2), 5869. DOI:10.1016/j.displa.2007.09.005. [Crossref]
122. Smart L. J., Stoffregen T. A., Benoit B. G. (2002). "Visually induced motion sickness predicted by postural instability", Human Factors Vol 44(3), 451465. DOI:10.1518/0018720024497745. [Crossref]
123. Snyder L. (1999). "This way up: illusions and internal models in the vestibular system", Nature Neuroscience Vol 2(5), 396398. DOI:10.1038/8056. [Crossref]
124. So R. H. Y., Lo W. T. (1999). "Cybersickness: an experimental study to isolate the effects of rotational scene oscillations", in: Proceedings of the IEEE Virtual Reality, pp. 237241. DOI:10.1109/VR.1999.756957.
125. Stanney K. M., Hale K. S., Nahmens I., Kennedy R. S. (2003). "What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience", Human Factors Vol 45(3), 504520. DOI:10.1518/hfes.45.3.504.27254. [Crossref]
126. Stanney K. M., Kennedy R. S. (1998). "Aftereffects from virtual environment exposure: how long do they last?", Proceedings of the Human Factors and Ergonomics Society Annual Meeting Vol 42(21), 14761480. DOI:10.1177/154193129804202103. [Crossref]
127. Stanney K. M., Kennedy R. S., Drexler J. M. (1997). "Cybersickness is not simulator sickness", in: Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting, pp.  11381142. DOI:10.1177/107118139704100292.
128. Stanney K. M., Kennedy R. S., Drexler J. M., Harm D. L. (1999). "Motion sickness and proprioceptive aftereffects following virtual environment exposure", Applied Ergonomics Vol 30(1), 2738. DOI:10.1016/S0003-6870(98)00039-8. [Crossref]
129. Stanney K. M., Kingdon K. S., Graeber D., Kennedy R. S. (2002). "Human performance in immersive virtual environments: effects of exposure duration, user control, and scene complexity", Human Performance Vol 15(4), 339366. DOI:10.1207/S15327043HUP1504. [Crossref]
130. Stein B. E., London N., Wilkinson L. K., Price D. D. (1996). "Enhancement of perceived visual intensity by auditory stimuli: a psychophysical analysis", Journal of Cognitive Neuroscience Vol 8(6), 497506. [Crossref]
131. Stoffregen T. A., Hettinger L. J., Haas M. W., Roe M. M., Smart L. J. (2000). "Postural instability and motion sickness in a fixed-base flight simulator", Human Factors Vol 42(3), 458469. DOI:10.1518/001872000779698097. [Crossref]
132. Stoffregen T. A., Smart L. J. (1998). "Postural instability precedes motion sickness", Brain Research Bulletin Vol 47(5), 437448. DOI:10.1016/S0361-9230(98)00102-6. [Crossref]
133. Sutherland I. E. (1968). "A head-mounted three dimensional display", in: Proceedings of Fall Joint Computer Conference — AFIPS’68, Part I, pp.  757764. ACM, New York, NY. DOI:10.1145/1476589.1476686.
134. Treisman M. (1977). "Motion sickness: an evolutionary hypothesis", Science Vol 197(4302), 493495. DOI:10.1126/science.301659. [Crossref]
135. Valmaggia L. R., Latif L., Kempton M. J., Rus-Calafell M. (2016). "Virtual reality in the psychological treatment for mental health problems: an systematic review of recent evidence", Psychiatry Research Vol 236, 189195. DOI:10.1016/j.psychres.2016.01.015. [Crossref]
136. Van Ombergen A., Van Rompaey V., Maes L. K., Van de Heyning P. H., Wuyts F. L. (2016). "Mal de debarquement syndrome: a systematic review", Journal of Neurology Vol 263(5), 843854. DOI:10.1007/s00415-015-7962-6. [Crossref]
137. Verschure P. F. M. J. (2011). "Neuroscience, virtual reality and neurorehabilitation: brain repair as a validation of brain theory", in: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp.  22542257. DOI:10.1109/IEMBS.2011.6090428.
138. Villard S. J., Flanagan M. B., Albanese G. M., Stoffregen T. A. (2008). "Postural instability and motion sickness in a virtual moving room", Human Factors Vol 50(2), 332345. DOI:10.1518/001872008X250728. [Crossref]
139. Viñas-Diz S., Sobrido-Prieto M. (2016). "Virtual reality for therapeutic purposes in stroke: a systematic review", Neurología (English Edition) Vol 31(4), 255277. DOI:10.1016/j.nrleng.2015.06.007. [Crossref]
140. Wada T., Fujisawa S., Doi S. (2016). "Analysis of driver’s head tilt using a mathematical model of motion sickness", International Journal of Industrial Ergonomics Vol 63, 8997. DOI:10.1016/j.ergon.2016.11.003. [Crossref]
141. Wada T., Yoshida K. (2016). "Effect of passengers’ active head tilt and opening/closure of eyes on motion sickness in lateral acceleration environment of cars", Ergonomics Vol 59(8), 10501059. DOI:10.1080/00140139.2015.1109713. [Crossref]
142. Wang J., Lewis R. F. (2016). "Contribution of intravestibular sensory conflict to motion sickness and dizziness in migraine disorders", Journal of Neurophysiology Vol 116(4), 15861591. DOI:10.1152/jn.00345.2016. [Crossref]
143. Warwick-Evans L., Beaumont S. (1995). "An experimental evaluation of sensory conflict versus postural control theories of motion sickness", Ecological Psychology Vol 7(3), 163179. DOI:10.1207/s15326969eco0703_1. [Crossref]
144. Weech S., Troje N. F. (2017). "Vection latency is reduced by bone-conducted vibration and noisy galvanic vestibular stimulation", Multisensory Research Vol 30(1), 6590. DOI:10.1163/22134808-00002545. [Crossref]
145. Wenzel R., Bartenstein P., Dieterich M., Danek A., Weindl A., Minoshima S., Ziegler S., Schwaiger M., Brandt T. (1996). "Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study", Brain Vol 119(1), 101110. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8624674 (accessed: 18 July 2017). [Crossref]
146. Williams B., Narasimham G., Rump B., McNamara T. P., Carr T. H., Rieser J., Bodenheimer B. (2007). "Exploring large virtual environments with an HMD when physical space is limited", in: Proceedings of the 4th Symposium on Applied Perception in Graphics and Visualization — APGV’07, p.  41. DOI:10.1145/1272582.1272590. [Crossref]
147. Wright W. G. (2014). "Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds", Frontiers in Systems Neuroscience Vol 8, 56. DOI:10.3389/fnsys.2014.00056. [Crossref]
148. Young L. R., Dichgans J., Murphy R., Brandt T. (1973). "Interaction of optokinetic and vestibular stimuli in motion perception", Acta Oto-Laryngologica Vol 76(1–6), 2431. DOI:10.3109/00016487309121479. [Crossref]
149. Zacharias G. L., Young L. R. (1981). "Influence of combined visual and vestibular cues on human perception and control of horizontal rotation", Experimental Brain Research Vol 41(2), 159171. DOI:10.1007/BF00236605. [Crossref]
150. Zanbaka C., Lok B., Babu S., Xiao D., Ulinski A., Hodges L. F. (2004). "Effects of travel technique on cognition in virtual environments", in: Proceedings of the Virtual Reality Annual International Symposium, pp.  149156. DOI:10.1109/VR.2004.1310068.
151. Zu Eulenburg P., Caspers S., Roski C., Eickhoff S. B. (2012). "Meta-analytical definition and functional connectivity of the human vestibular cortex", NeuroImage Vol 60(1), 162169. DOI:10.1016/j.neuroimage.2011.12.032. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-20181293
Loading

Article metrics loading...

/content/journals/10.1163/22134808-20181293
2018-05-09
2018-09-25

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation