Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Intact Dynamic Visual Capture in People With One Eye

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multisensory Research
For more content, see Seeing and Perceiving and Spatial Vision.

Observing motion in one modality can influence the perceived direction of motion in a second modality (dynamic capture). For example observing a square moving in depth can influence the perception of a sound to increase in loudness. The current study investigates whether people who have lost one eye are susceptible to audiovisual dynamic capture in the depth plane similar to binocular and eye-patched viewing control participants. Partial deprivation of the visual system from the loss of one eye early in life results in changes in the remaining intact senses such as hearing. Linearly expanding or contracting discs were paired with increasing or decreasing tones and participants were asked to indicate the direction of the auditory stimulus. Magnitude of dynamic visual capture was measured in people with one eye compared to eye-patched and binocular viewing controls. People with one eye have the same susceptibility to dynamic visual capture as controls, where they perceived the direction of the auditory signal to be moving in the direction of the incongruent visual signal, despite previously showing a lack of visual dominance for audiovisual cues. This behaviour may be the result of directing attention to the visual modality, their partially deficient sense, in order to gain important information about approaching and receding stimuli which in the former case could be life-threatening. These results contribute to the growing body of research showing that people with one eye display unique accommodations with respect to audiovisual processing that are likely adaptive in each unique sensory situation.

Affiliations: 1: 1Department of Psychology and Centre for Vision Research, York University, Toronto, ON, Canada ; 2: 2The Hospital for Sick Children, Toronto, ON, Canada

*To whom correspondence should be addressed. E-mail: steeves@yorku.ca
Loading

Full text loading...

/content/journals/10.1163/22134808-20181311
Loading

Data & Media loading...

1. Alais D., Burr D. (2004). "The ventriloquist effect results from near-optimal bimodal integration", Curr. Biol. Vol 14, 257262. [Crossref]
2. Alais D., Newell F. N., Mamassian P. (2010). "Multisensory processing in review: from physiology to behaviour", Seeing and Perceiving Vol 23, 338. [Crossref]
3. Bach D. R., Schächinger H., Neuhoff J. G., Esposito F., Di Salle F., Lehmann C., Herdener M., Scheffler K., Seifritz E. (2008). "Rising sound intensity: an intrinsic warning cue activating the amygdala", Cereb. Cortex Vol 18, 145150. [Crossref]
4. Bowns L., Kirshner E. L., Steinbach M. J. (1994). "Shear sensitivity in normal and monocularly enucleated adults", Vision Res. Vol 34, 33893395. [Crossref]
5. Cappe C., Morel A., Barone P., Rouiller E. M. (2009). "The thalamocortical projection systems in primate: an anatomical support for multisensory and sensorimotor interplay", Cereb. Cortex Vol 19, 20252037. [Crossref]
6. Colavita F. B. (1974). "Human sensory dominance", Percept. Psychophys. Vol 16, 409412. [Crossref]
7. Colavita F. B., Weisberg D. (1979). "A further investigation of visual dominance", Percept. Psychophys. Vol 25, 345347. [Crossref]
8. Egeth H. E., Sager L. C. (1977). "On the locus of visual dominance", Percept. Psychophys. Vol 22, 7786. [Crossref]
9. Ernst M. O., Banks M. S. (2002). "Humans integrate visual and haptic information in a statistically optimal fashion", Nature Vol 415, 429433. [Crossref]
10. Freeman R. D., Bradley A. (1980). "Monocularly deprived humans: nondeprived eye has supernormal vernier acuity", J. Neurophys. Vol 43, 16451653. [Crossref]
11. González E. G., Steinbach M. J., Ono H., Wolf M. (1989). "Depth perception in children enucleated at an early age", Clin. Vis. Sci. Vol 4, 173177.
12. González E. G., Steeves J. K. E., Kraft S. P., Gallie B. L., Steinbach M. J. (2002). "Foveal and eccentric acuity in one-eyed observers", Behav. Brain Res. Vol 128, 7180. [Crossref]
13. Graziano M. S. A., Cooke D. F. (2006). "Parieto-frontal interactions, personal space and defensive behavior", Neuropsychologia Vol 44, 845859. [Crossref]
14. Harris L. R., Jenkin M. (Eds) (2001). Vision and Attention. Springer, New York, NY, USA.
15. Harrison N. (2012). "Auditory motion in depth is preferentially ‘captured’ by visual looming signals", See. Perceiv. Vol 25, 7185. [Crossref]
16. Harrison N. R., Witheridge S., Makin A., Wuerger S. M., Pegna A. J., Meyer G. F. (2015). "The effects of stereo disparity on the behavioural and electrophysiological correlates of perception of audio-visual motion in depth", Neuropsychologia Vol 78, 5162. [Crossref]
17. Hoover A. E. N., Harris L. R., Steeves J. K. E. (2012). "Sensory compensation in sound localization in people with one eye", Exp. Brain Res. Vol 216, 565574. [Crossref]
18. Howard I. P. (2002). Seeing in Depth, Vol. 1, Basic Mechanisms. I Porteous, Thornhill, ON, Canada.
19. Jain A., Sally S. L., Papathomas T. V. (2008). "Audiovisual short-term influences and aftereffects in motion: examination across three sets of directional pairings", J. Vis. Vol 8, 113.
20. Kitagawa N., Ichihara S. (2002). "Hearing visual motion in depth", Nature Vol 416, 172174. [Crossref]
21. Kitajima N., Yamashita Y. (1999). "Dynamic capture of sound motion by light stimuli moving in three-dimensional space", Percept. Mot. Skills Vol 89, 11391158. [Crossref]
22. Mateeff S., Hohnsbein J., Noack T. (1985). "Dynamic visual capture: apparent auditory motion induced by a moving visual target", Perception Vol 14, 721727. [Crossref]
23. Moro S. S., Steeves J. K. E. (2012). "No Colavita effect: equal auditory and visual processing in people with one eye", Exp. Brain Res. Vol 216, 367373. [Crossref]
24. Moro S. S., Steeves J. K. E. (2013). "No Colavita effect: increasing temporal load maintains equal auditory and visual processing in people with one eye", Neurosci. Lett. Vol 556, 186190. [Crossref]
25. Moro S. S., Harris L. R., Steeves J. K. E. (2014). "Optimal audiovisual processing in people with one eye", Multisens. Res. Vol 27, 173188. [Crossref]
26. Nicholas J., Heywood C. A., Cowey A. (1996). "Contrast sensitivity in one-eyed subjects", Vision Res. Vol 26, 175180. [Crossref]
27. Reed M. J., Steinbach M. J., Ono H., Kraft S., Gallie B. (1995). "Alignment ability of strabismic and eye enucleated subjects on the horizontal and oblique meridians", Vision Res. Vol 35, 25232528. [Crossref]
28. Sinnett S., Soto-Faraco S., Spence C. (2008). "The co-occurrence of multisensory competition and facilitation", Acta Psycholog. Vol 128, 153161. [Crossref]
29. Soto-Faraco S., Kingstone A., Spence C. (2003). "Multisensory contributions to the perception of motion", Neuropsychologia Vol 41, 18471862. [Crossref]
30. Spence C. (2009). "Explaining the Colavita visual dominance effect", Prog. Brain Res. Vol 176, 245258. [Crossref]
31. Spence C., Parise C., Chen Y.-C. (2011). "The Colavita visual dominance effect", in: Frontiers in the Neural Bases of Multisensory Processes, Murray M. M., Wallace M. (Eds), pp.  523550. CRC Press, Boca Raton, FL, USA.
32. Steeves J. K. E., Gray R., Steinbach M. J., Regan D. (2000). "Accuracy of estimating time to collision using only monocular information in unilaterally enucleated observers and monocularly viewing normal controls", Vision Res. Vol 40, 37833789. [Crossref]
33. Steeves J. K. E., González E. G., Gallie B. L., Steinbach M. J. (2002). "Early unilateral enucleation disrupts motion processing", Vision Res. Vol 42, 143150. [Crossref]
34. Steeves J. K. E., Wilkinson F., González E. G., Wilson H. R., Steinbach M. J. (2004). "Global shape discrimination at reduced contrast in enucleated observers", Vision Res. Vol 44, 943949. [Crossref]
35. Steeves J. K. E., González E. G., Steinbach M. J. (2008). "Vision with one eye: a review of visual function following monocular enucleation", Spat. Vis. Vol 21, 509529. [Crossref]
36. Wong N. A., Rafique S. A., Kelly K. R., Moro S. S., Gallie B. L., Steeves J. K. E. (2017). "Altered white matter structure in the visual system following early monocular enucleation", Hum. Brain Mapp. Vol 39, 133144. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/22134808-20181311
Loading

Article metrics loading...

/content/journals/10.1163/22134808-20181311
2018-05-09
2018-09-21

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Multisensory Research — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation