Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Open Access How Humans Consciously See Paintings and Paintings Illuminate How Humans See

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

How Humans Consciously See Paintings and Paintings Illuminate How Humans See

  • HTML
  • PDF
Add to Favorites
You must be logged in to use this functionality

image of Art & Perception

This article illustrates how the paintings of visual artists activate multiple brain processes that contribute to their conscious perception. Paintings of different artists may activate different combinations of brain processes to achieve their artist’s aesthetic goals. Neural models of how advanced brains see have characterized various of these processes. These models are used to explain how paintings of Jo Baer, Banksy, Ross Bleckner, Gene Davis, Charles Hawthorne, Henry Hensche, Henri Matisse, Claude Monet, Jules Olitski, and Frank Stella may achieve their aesthetic effects. These ten painters were chosen to illustrate processes that range from discounting the illuminant and lightness anchoring, to boundary and texture grouping and classification, through filling-in of surface brightness and color, to spatial attention, conscious seeing, and eye movement control. The models hereby clarify how humans consciously see paintings, and paintings illuminate how humans see.

Affiliations: 1: Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, Departments of Mathematics & Statistics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, Boston, MA 02215, USA ; 2: Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord Street (L 1004), Boston, MA 02118, USA


This article illustrates how the paintings of visual artists activate multiple brain processes that contribute to their conscious perception. Paintings of different artists may activate different combinations of brain processes to achieve their artist’s aesthetic goals. Neural models of how advanced brains see have characterized various of these processes. These models are used to explain how paintings of Jo Baer, Banksy, Ross Bleckner, Gene Davis, Charles Hawthorne, Henry Hensche, Henri Matisse, Claude Monet, Jules Olitski, and Frank Stella may achieve their aesthetic effects. These ten painters were chosen to illustrate processes that range from discounting the illuminant and lightness anchoring, to boundary and texture grouping and classification, through filling-in of surface brightness and color, to spatial attention, conscious seeing, and eye movement control. The models hereby clarify how humans consciously see paintings, and paintings illuminate how humans see.


Full text loading...


Data & Media loading...

1. Ahissar M., and Hochstein S. (1993). "Attentional control of early perceptual learning", Proc. Natl Acad. Sci. USA 90, 57185722.
2. Ahissar M., and Hochstein S. (1997). "Task difficulty and the specificity of perceptual learning", Nature 387 (6631), 401406.
3. Anonymous (2000). Frank Stella and the art of the protractor [Video file]. Retrieved from. Accessed December 26, 2016.
4. Anonymous (2016). “Lysander-1”. Retrieved from. Accessed December 26, 2016.
5. Baer J. (n.d.). “"Primary Light Group: Red, Green, Blue, 1964-65"”. Retrieved from. Accessed December 26, 2016.
6. Baer J. (n.d.). “"Stations of the Spectrum (Primary)"”. Retrieved from. Accessed December 26, 2016.
7. Baer J. (1970). "Art & vision: Mach bands", Aspen Mag . Winter 1970, 8.
8. Banksy (2005). Wall and piece. Century, London, UK.
9. Beck J., and Prazdny S. (1981). "Highlights and the perception of glossiness", Percept. Psychophys. 30, 407410.
10. Bhatt R.,, Carpenter G., and Grossberg S. (2007). "Texture segregation by visual cortex: Perceptual grouping, attention, and learning". Vis. Res. 47, 31733211.
11. Boersma L. (1995). "Jo Baer", BOMB Mag . 53 (Fall). Retrieved from . Accessed December 26, 2016.
12. Bradley D. R., and Dumais S.T. (1984). "The effects of illumination level and retinal size on the depth stratification of subjective contour figures", Perception 13, 155164.
13. Bressan P. (2001). "Explaining lightness illusions", Perception 30, 10311046.
14. Brockmole J. R.,, Castelhano M. S., and Henderson J. M. (2006). "Contextual cueing in naturalistic scenes: Global and local contexts", J. Exp. Psychol. Learn. Mem. Cogn. 32, 699706.
15. Brooks P. J.,, Tomasello M.,, Dodson K.,, and Lewis L. B. (1999). "Young children’s overgeneralizations with fixed transitivity verbs", Child Dev. , 70, 13251337.
16. Bullier J.,, Hupé J. M.,, James A., and Girard P. (1996). "Functional interactions between areas V1 and V2 in the monkey", J. Physiol. (Paris) 90, 217220.
17. Buschman T. J., and Miller E. K. (2007). "Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices", Science 315, 18601862.
18. Cao Y.,, and Grossberg S. (2005). "A laminar cortical model of stereopsis and 3D surface perception: Closure and da Vinci stereopsis", Spat. Vis. 18, 515578.
19. Cao Y., and Grossberg S. (2012). "Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: A method of converting neural rate models into spiking models", Neural Netw. 26, 7598.
20. Cao Y.,, Grossberg S., and Markowitz J. (2011). "How does the brain rapidly learn and reorganize view- and positionally-invariant object representations in inferior temporal cortex?" Neural Netw. 24, 10501061.
21. Caputo G., and Guerra S. (1998). "Attentional selection by distractor suppression", Vis. Res. 38, 669689.
22. Carpenter G. A., and Grossberg S. (1987). "A massively parallel architecture for a self-organizing neural pattern recognition machine", Comput. Vis. Graph. Image Process. 37, 54115.
23. Carpenter G. A., and Grossberg S. (Eds.) (1991). Pattern Recognition by Self-Organizing Neural Networks . MIT Press, Cambridge, MA, USA.
24. Carrasco M.,, Penpeci-Talgar C., and Eckstein M. (2000). "Spatial covert attention increases contrast sensitivity across the CSF: Support for signal enhancement", Vis. Res. 40, 12031215.
25. Cavanagh P. (2005). "The artist as neuroscientist", Nature 434, 301307.
26. Cavanagh P.,, Hunt A. R.,, Afraz A., and Rolfs M. (2010). "Visual stability based on remapping of attention pointers, Trends Cogn". Sci. 14, 147153.
27. Chang H.-C.,, Grossberg S., and Cao Y. (2014) "Where’s Waldo? How perceptual cognitive, and emotional brain processes cooperate during learning to categorize and find desired objects in a cluttered scene", Front. Integr. Neurosci. 8, 43. doi: 10.3389/fnint.2014.0043.
28. Chiu Y. C., and Yantis S. (2009). "A domain-independent source of cognitive control for task sets: shifting spatial attention and switching categorization rules", J. Neurosci. 29, 39303938.
29. Chun M. M. (2000). "Contextual cueing of visual attention", Trends Cogn. Sci . 4, 170178.
30. Chun M. M., and Jiang Y. (1998). "Contextual cueing: Implicit learning and memory of visual context guides spatial attention", Cogn. Psychol. 36, 2871.
31. Cohen M. A., and Grossberg S. (1984). "Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance", Percept. Psychophys. 36, 428456.
32. Conway B. R., and Rehding A. (2013). "Neuroaesthetics and the trouble with beauty", PLoS Biol. 11, e1001504. doi:10.1371/journal.pbio.1001504.
33. Desimone R. (1998). "Visual attention mediated by biased competition in extrastriate visual cortex". Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 12451255.
34. DeYoe E. A., and Van Essen D. C. (1988). "Concurrent processing streams in monkey visual cortex", Trends Neurosci. 11, 219226.
35. Dosher B. A.,, Sperling G., and Wurst S. A. (1986). "Tradeoffs between stereopsis and proximity luminance covariance as determinants of perceived 3D structure", Vis. Res. 26, 973990.
36. Downing C. J. (1988). "Expectancy and visual-spatial attention: Effects on perceptual quality", J. Exp. Psychol. Hum. Percept. Perform. 14, 188202.
37. Egusa G. (1983). "Effects of brightness, hue, and saturation on perceived depth between adjacent regions in the visual field", Perception 12, 167175.
38. Engberg S., (2005). "Frank Stella", in: Bits & Pieces Put Together to Present a Semblance of a Whole: Walker Art Center Collections , Rothfuss J., and Carpenter E. (Eds), pp. 530533, Walker Art Center, Minneapolis, MN, USA.
39. Engel A. K.,, Fries P., and Singer W. (2001). "Dynamic predictions: Oscillations and synchrony in top-down processing", Nat. Rev. Neurosci. 2, 704716.
40. Fang L., and Grossberg S. (2009). "From stereogram to surface: How the brain sees the world in depth", Spat. Vis. 22, 4582.
41. Fazl A.,, Grossberg S., and Mingolla E. (2009). "View-invariant object category learning, recognition, and search: How spatial and object attention are coordinated using surface-based attentional shrouds", Cogn. Psychol. 58, 148.
42. Field D. J.,, Hayes A., and Hess R. F. (1993). "Contour integration by the human visual system: Evidence for a local “association field”", Vis. Res. 33, 173193.
43. Foley N. C.,, Grossberg S., and Mingolla E. (2012). "Neural dynamics of object-based multifocal visual spatial attention and priming: Object cueing, useful-field-of-view, and crowding", Cogn. Psychol. 65, 77117.
44. Friedman A. (1979). "Framing pictures: the role of knowledge in automatized encoding and memory for gist", J. Exp. Psychol. Gen. 108, 316355.
45. Gao E., and Suga N. (1998). "Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system", Proc. Natl Acad. Sci. USA 95, 1266312670.
46. Gilchrist A. L.,, Kossyfidis C.,, Bonato F.,, Agostini T.,, Cataliotti J.,, Li X.,, Spehar B.,, Annan V., and Economou E. (1999). "An anchoring theory of lightness perception", Psychol. Rev. 106, 795834.
47. Gove A.,, Grossberg S., and Mingolla E. (1995). "Brightness perception, illusory contours, and corticogeniculate feedback", Vis. Neurosci. 12, 10271052.
48. Gregoriou G. G.,, Gotts S. J.,, Zhou H., and Desimone R. (2009). "High-frequency, long-range coupling between prefrontal and visual cortex during attention", Science 324, 12071210.
49. Grossberg S. (1973). "Contour enhancement, short-term memory, and constancies in reverberating neural networks", Stud. Appl. Math. 52, 213257.
50. Grossberg S. (1976). "Adaptive pattern classification and universal recoding, II: Feedback, expectation, olfaction, and illusions", Biol. Cybernet. 23, 187202.
51. Grossberg S. (1980). "How does a brain build a cognitive code?" Psychol. Rev. 87, 151.
52. Grossberg S., (1984). "Outline of a theory of brightness, color, and form perception", in: Trends in mathematical psychology , Degreef E., and van Buggenhaut J. (Eds), pp. 5985, North-Holland, Amsterdam, Netherlands.
53. Grossberg S. (1987a). "Cortical dynamics of three-dimensional form, color, and brightness perception, I: Monocular theory", Percept. Psychophys. 41, 87116.
54. Grossberg S. (1987b). "Cortical dynamics of three-dimensional form, color, and brightness perception, II: Binocular theory", Percept. Psychophys. 41, 117158.
55. Grossberg S. (1994). "3-D vision and figure–ground separation by visual cortex", Percept. Psychophys. 55, 48120.
56. Grossberg S. (1997). Cortical dynamics of three-dimensional figure–ground perception of two-dimensional figures, Psychol. Rev. 104, 618658.
57. Grossberg S. (1999). "How does the cerebral cortex work? Learning, attention and grouping by the laminar circuits of visual cortex", Spat. Vis. 12, 163186.
58. Grossberg S. (2000). "The complementary brain: Unifying brain dynamics and modularity, Trends Cogn". Sci. 4, 233246.
59. Grossberg S., (2007). "Towards a unified theory of neocortex: Laminar cortical circuits for vision and cognition", in: Computational Neuroscience: From Neurons to Theory and Back Again , Cisek P.,, Drew T., and Kalaska J. (Eds), pp. 79104, Elsevier, Amsterdam, Netherlands.
60. Grossberg S. (2008). "The art of seeing and painting", Spat. Vis. 21, 463486.
61. Grossberg S. (2009). "Cortical and subcortical predictive dynamics and learning during perception, cognition, emotion and action", Philos. Trans. R. Soc. Lond. B Biol. Sci. Vol 364, 12231234.
62. Grossberg S. (2013). "Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world", Neural Netw. 37, 147.
63. Grossberg S. (2014). "How visual illusions illuminate complementary brain processes: Illusory depth from brightness and apparent motion of illusory contours", Front. Hum. Neurosci. 8, 854. doi: 10.3389/fnhum.2014.00854.
64. Grossberg S. (2016). "Cortical dynamics of figure–ground separation in response to 2D pictures and 3D scenes: How V2 combines border ownership, stereoscopic cues, and Gestalt grouping rules", Front. Psychol. 6, 2054. doi: 10.3389/fpsyg.2015.02054.
65. Grossberg S. (2017). "Towards solving the hard problem of consciousness: The varieties of brain resonances and the conscious experiences that they support", Neural Netw . 87, 3895.
66. Grossberg S., (in press). "The visual world as illusion: The ones we know and the ones we don’t", in: Oxford Compendium of Visual Illusions , Shapiro A., and Todorovic D. (Eds), Ch. 7, Oxford University Press, Oxford, United Kingdom.
67. Grossberg S., and Hong S. (2006). "A neural model of surface perception: Lightness, anchoring, and filling-in", Spat. Vis. 19, 263321.
68. Grossberg S., and Huang T.-R. (2009). "ARTSCENE: A neural system for natural scene classification", J. Vis. 9, 6. doi:10.1167/ 9.4.6. 9.4.6
69. Grossberg S., and McLoughlin N. (1997). "Cortical dynamics of 3-D surface perception: Binocular and half-occluded scenic images", Neural Netw. 10, 15831605.
70. Grossberg S., and Mingolla E. (1985a). "Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading", Psychol.Rev. 92, 173211.
71. Grossberg S., and Mingolla E. (1985b). "Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations", Percept. Psychophys. 38, 141171.
72. Grossberg S., and Mingolla E. (1987). "Neural dynamics of surface perception: Boundary webs, illuminants, and shape-from-shading", Comput. Vis. Graph. Image Process. 37, 116165.
73. Grossberg S., and Raizada R. (2000). "Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex", Vis. Res. 40, 14131432.
74. Grossberg S., and Seidman D. (2006). "Neural dynamics of autistic behaviors: Cognitive, emotional, and timing substrates", Psychol. Rev. 113, 483525.
75. Grossberg S., and Swaminathan G. (2004). "A laminar cortical model for 3D perception of slanted and curved surfaces and of 2D images: Development, attention and bistability", Vis. Res. 44, 11471187.
76. Grossberg S., and Todorovic D. (1988). "Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena", Percept. Psychophys. 43, 241277.
77. Grossberg S., and Versace M. (2008). "Spikes, synchrony, and attentive learning by laminar thalamocortical circuits", Brain Res. 1218, 278312.
78. Grossberg G., and Williamson J.R. (2001). "A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual groupings and learning", Cereb. Cortex 11, 3758.
79. Grossberg S., and Yazdanbakhsh A. (2005). "Laminar cortical dynamics of 3D surface perception: Stratification, transparency, and neon color spreading", Vis. Res. 45, 17251743.
80. Grossberg S.,, Mingolla E., and Ross W. D. (1997). "Visual brain and visual perception: How does the cortex do perceptual grouping?" Trends Neurosci. 20, 106111.
81. Grossberg S.,, Kuhlmann L., and Mingolla E. (2007). "A neural model of 3D shape-from-|texture: Multiple-scale filtering, boundary grouping, and surface filling-in", Vis. Res. 47, 634672.
82. Grossberg S.,, Markowitz J., and Cao Y. (2011). "On the road to invariant recognition: Explaining tradeoff and morph properties of cells in inferotemporal cortex using multiple-scale task-sensitive attentive learning", Neural Netw. 24, 10361049.
83. Grossberg S.,, Srinivasan K., and Yazdanbakhsh A. (2014). "Binocular fusion and invariant category learning due to predictive remapping during scanning of a depthful scene with eye movements", Front. Psychol. 5, 1457. doi: 10.3389/fpsyg.2014.01457.
84. Harnad S. (1990). "The symbol grounding problem", Phys. B 42, 335346.
85. Hawthorne C. W. (1938/1960). Hawthorne on Painting . Dover, Mineola, NY, USA.
86. Heitger F., and von der Heydt R. (1993). "A computational model of neural contour processing: Figure–ground segregation and illusory contours", Proc. 4th Int. Conf. Comput. Vis. , Berlin, Germany, pp. 3240.
87. Helmholtz H. von, (1866). Helmholtz’s Treatise on Physiological Optics . Optical Society of America, New York, NY, USA.
88. Hensche H. (1988). The Art of Seeing and Painting . Portier Gorman, Thibodaux, LA, USA.
89. Hong S., and Grossberg S. (2004). "A neuromorphic model for achromatic and chromatic surface representation of natural images", Neural Netw. 17, 787808.
90. Huang T.-R., and Grossberg S. (2010). "Cortical dynamics of contextually cued attentive visual learning and search: Spatial and object evidence accumulation", Psychol. Rev. 117, 10801112.
91. Hubel D. H., and Wiesel T. N. (1968). "Receptive fields and functional architecture of monkey striate cortex", J. Physiol. 195, 215243.
92. Hupé J. M.,, James A. C.,, Girard D. C., and Bullier J. (1997). "Feedback connections from V2 modulate intrinsic connectivity within V1", Abstr. Soc. Neurosci. 23, 1031.
93. Intraub H., (1999). "Understanding and remembering briefly glimpsed pictures: implications for visual scanning and memory", in: Fleeting Memories: Cognition of Brief Visual Stimuli , Coltheart V. (Ed.), pp. 4770, MIT Press, Cambridge, MA, USA.
94. Ito M.,, Westheimer G., and Gilbert C. D. (1998). "Attention and perceptual learning modulate contextual influences on visual perception", Neuron 20, 11911197.
95. Jiang Y., and Chun M. M. (2001). "Selective attention modulates implicit learning", Q. J. Exp. Psychol. 54A, 11051124.
96. Jiang Y., and Wagner L. C. (2004). "What is learned in spatial contextual cueing: Configuration or individual locations?" Percept.Psychophys . 66, 454463.
97. Julesz B., and Schumer R. A. (1981). "Early visual perception", Annu. Rev. Psychol. 32, 575627.
98. Kanizsa G. (1955). "Margini quasi-percettivi in campi con stimulazione omogenea", Rev. Psychol. 49, 730.
99. Kanizsa G. (1974). "Contours without gradients or cognitive contours", It. J. Psychol. 9, 93113.
100. Kanizsa G. (1979). Organization in Vision: Essays on Gestalt Perception , Praeger, New York, NY, USA.
101. Kass J.,, Harland B., and Donnelly N. (2015). "Abstracting the set: Monet’s cathedrals and stable mental concepts from serial pictorial artworks", Art Percept. 3, 139150.
102. Kastner S., and Ungerleider L. G. (2001). "The neural basis of biased competition in human visual cortex", Neuropsychologia 39, 12631276.
103. Kelly F. J., and Grossberg S. (2000). "Neural dynamics of 3-D surface perception: Figure–ground separation and lightness perception", Percept. Psychophys. 62, 15961619.
104. Koenderink J. J.,, Van Doorn A.,, Albertazzi L., and Wagemans J. (2015). "Relief articulation techniques", Art Percept. 3, 151171.
105. Koenderink J. J.,, Van Doorn A.,, Pinna B., and Wagemans J. (2016). "Boundaries, transitions and passage", Art Percept. 4, 185204.
106. Krupa D. J.,, Ghazanfar A. A., and Nicolelis M. A. L. (1999). "Immediate thalamic sensory plasticity depends on corticothalamic feedback", Proc. Natl Acad. Sci. 96, 82008205.
107. Kulikowski J. J. (1978). "Limit of single vision in stereopsis depends on contour sharpness", Nature 275, 126127.
108. Lamme V. A. F. (2006). "Towards a true neural stance on consciousness, Trends Cogn". Sci. 10, 494501.
109. Land E. H. (1964). "The retinex", Am. Sci. 52, 247–253, 255264.
110. Land E. H. (1977). "The retinex theory of color vision", Sci. Am. 237, 108128.
111. Land E. H., and McCann J. J. (1971). "Lightness and retinex theory", J. Opt. Soc. Am. 61, 111.
112. Llinas R.,, Ribary U.,, Contreras D., and Pedroarena C. (1998). "The neuronal basis for consciousness", Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 18411849.
113. Livingstone M. (2002). Vision and Art: The biology of Seeing , Henry N. Abrams, Inc., New York, NY, USA.
114. Lleras A., and von Mühlenen A. (2004). "Spatial context and top-down strategies in visual search", Spat. Vis. 17, 465482.
115. Lu Z.-L., and Dosher B. A. (2004). "Perceptual learning retunes the perceptual template in foveal orientation identification", J. Vis. 4, 5. doi:10.1167/4.1.5
116. Luck S. J.,, Chelazzi L.,, Hillyard S. A., and Desimone R. (1997). "Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex", J. Neurophysiol. 77, 2442.
117. Mann S.,, edited by Mann P,. and Pepperell R. (2016). "Perceptual systems, an inexhaustible reservoir of information and the importance of art", Art Percept. 4, 265–279.
118. Matisse H. (1947/1992). Jazz, George Braziller, Scranton, PA, USA.
119. Mooney C. M. (1957). "Age in the development of closure ability in children", Can. J. Psychol. 11, 219226.
120. Mounts J. R. W. (2000). "Evidence for suppressive mechanisms in attentional selection: Feature singletons produce inhibitory surrounds", Percept. Psychophys. 62, 969983.
121. Mumford D. (1992). "On the computational architecture of the neocortex. II. The role of corticocortical loops", Biol. Cybernet. 66, 241251.
122. Necker L. A. (1832). "Observations on some remarkable optical phaenomena seen in Switzerland; and on an optical phaenomenon which occurs on viewing a figure of a crystal or geometrical solid, London Edinburgh Philos". Mag. J. Sci. 1, 329337.
123. Olitski J. (1994). "Clement Greenberg in my studio", Am. Art , 8, 125129.
124. Oliva A., (2005). "Gist of the scene", in: Neurobiology of Attention , Itti L.,, Rees G., and Tsotsos J. K. (Eds), pp. 251257, Elsevier Academic Press, Burlington, MA, USA.
125. Oliva A., and Torralba A. (2001). "Modeling the shape of the scene: A holistic representation of the spatial envelope", Int. J. Comput. Vis. 42, 145175.
126. Olson I. R., and Chun M. M. (2002). "Perceptual constraints on implicit learning of spatial context", Vis. Cogn. 9, 273302.
127. Palma J.,, Versace M., and Grossberg S. (2012a). "After-hyperpolarization currents and acetylcholine control sigmoid transfer functions in a spiking cortical model", J. Comput. Neurosci. 32, 253280.
128. Palma J.,, Grossberg S., and Versace M. (2012b). "Persistence and storage of activity patterns in spiking recurrent cortical networks: Modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine", Front. Comput. Neurosci . 6, 42. doi: 10.3389.fncom.2012.00042.
129. Parker J. L., and Dostrovsky J. O. (1999). "Cortical involvement in the induction, but not expression, of thalamic plasticity", J. Neurosci. 19, 86238629.
130. Perlovsky L. I. (2010). "Intersections of mathematical, cognitive, and aesthetic theories of mind", Psychol. Aesthet. Creat. Arts 4, 1117.
131. Perry L. C. (1927). "Reminiscences of Claude Monet from 1889 to 1909", Am. Mag. Art 18, 119126.
132. Perry E. K.,, Lee M. L. W.,, Martin-Ruiz C. M.,, Court J. A.,, Volsen S. G.,, Merrit J.,, Folly E.,, Iversen P. E.,, Bauman M. L.,, Perry R. H., and Wenk G. L. (2001). "Cholinergic activity in autism: Abnormalities in the cerebral cortex and basal forebrain", Am. J. Psychiat. 158, 10581066.
133. Pinna B., and Grossberg S. (2005). "The watercolor illusion and neon color spreading: A unified analysis of new cases and neural mechanisms". J. Opt. Soc. Am. A 22, 22072221.
134. Pinna B., and Reeves A. (2006). "Lighting, backlighting and watercolor illusions and the laws of figurality", Spat. Vis. 19, 341373.
135. Posner M. (1980). "Orienting of attention", Q. J. Exp. Psychol. 32, 325.
136. Pollen D. A. (1999). "On the neural correlates of visual perception", Cereb. Cortex 9, 419.
137. Potter M. C. (1976). "Short-term conceptual memory for pictures", J. Exp. Psychol. Hum. Learn. Mem. 2, 509522.
138. Potter M. C., and Levy E. I. (1969). "Recognition memory for a rapid sequence of pictures", J. Exp. Psychol. 81, 1015.
139. Purghé F., and Coren S. (1992). "Amodal completion, depth stratification, and illusory figures: A test of Kanizsa’s explanation", Perception 21, 325335.
140. Ramachandran V. S.,, Ruskin D.,, Cobb S.,, Rogers-Ramachandran D., and Tyler C.W. (1994). "On the perception of illusory contours", Vis. Res.Vol 34 , 31453152.
141. Rankin A. (1987). "Ross Bleckner". BOMB Mag . 19, Spring.
142. Rao R. P. N., and Ballard D. H. (1999). "Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive field effects", Nat. Neurosci. 2, 7987.
143. Reynolds J. H., and Desimone R. (2003). "Interacting roles of attention and visual salience in V4", Neuron 37, 853863.
144. Reynolds J.,, Chelazzi L., and Desimone R. (1999). "Competitive mechanisms subserve attention in macaque areas V2 and V4", J. Neurosci. 19, 17361753.
145. Richards W., and Kaye M. G. (1974). "Local versus global stereopsis: Two mechanisms", Vis. Res. 14, 13451347.
146. Riggs T. (1997). Instand Loveland, 1968. Retrieved from. Accessed December 26, 2016.
147. Robichaux J. W. (1997). Hensche on Painting , Dover, Mineola, NY, USA.
148. Roelfsema P. R.,, Lamme V. A. F., and Spekreijse H. (1998). "Object-based attention in the primary visual cortex of the macaque monkey", Nature 395, 376381.
149. Rubin N. (2015). "Banksy’s graffiti art reveals insights about perceptual surface completion", Art Percept. 3, 117.
150. Schor C. M., and Tyler C. W. (1981). "Spatio-temporal properties of Panum’s fusional area", Vis. Res. 21, 683692.
151. Schor C. M. and Wood, 1. (1983). "Disparity range for local stereopsis as a function of luminance spatial frequency", Vis. Res. 23, 16491654.
152. Schor C. M.,, Wood I., and Ogawa J. (1984). "Binocular sensory fusion is limited by spatial resolution", Vis. Res. 24, 661665.
153. Sillito A. M.,, Jones H. E.,, Gerstein G. L., and West D. C. (1994). "Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex", Nature 369, 479482.
154. Singer W. (1998). "Consciousness and the structure of neuronal representations", Philos. Trans. R. Soc. B Biol. Sci. 353, 18291840.
155. Somers D. C.,, Dale A. M.,, Seiffert A. E., and Tootell R. B. (1999). "Functional MRI reveals spatially specific attentional modulation in human primary visual cortex", Proc. Natl Acad. Sci. USA 96, 16631668.
156. Steinman B. A.,, Steinman S. B., and Lehmkuhle S. (1995). "Visual attention mechanisms show a center-surround organization", Vis. Res. 35, 18591869.
157. Thorell L. G.,, De Valois L. G., and Albrecht D. G. (1984). "Spatial mapping of monkey V1 cells with pure color and luminance stimuli", Vis. Res. 24, 751769.
158. Tomasello M., and Herron C. (1988). "Down the garden path: Inducing and correcting overgeneralization errors in the foreign language classroom", Appl. Psycholinguist. 9, 237246.
159. Tse P. U. (2005). "Voluntary attention modulates the brightness of overlapping transparent surfaces", Vis. Res. 45, 10951098.
160. Tyler C. W. (1975). "Spatial organization of binocular disparity sensitivity", Vis. Res. 15, 583590.
161. Tyler C. W., (1983). "Sensory processing of binocular disparity", in: Schor C. M., and Cuiffreda K. J. (Eds), Vergence Eye Movements, pp. 199295, Butterworths, Boston, MA, USA.
162. Tyler C. W., and Kontsevich L. L. (1995). "Mechanisms of stereoscopic processing: Stereoattention and surface perception in depth reconstruction", Perception 24, 127153.
163. Vanderbosch M. E.,, Van Doorn A. J.,, Koenderink J. J., and Te Pas S. F. (2015). "Edge-based shading as a depth cue in painting", Art Percept. 3, 173189.
164. Vanduffel W.,, Tootell R. B., and Orban G. A. (2000). "Attention-dependent suppression of meta-bolic activity in the early stages of the macaque visual system, Cereb". Cortex 10, 109126.
165. Van Tuijl H. F. J. M. (1975). "A new visual illusion: Neonlike color spreading and complementary color induction between subjective contours", Acta Psychol. 39, 441445.
166. Varin D. (1971). "Fenomini di contrasto e diffusione chromatica nell organizzazone spaziale del campo percettivo", Rev. Psychol. 65, 101128.
167. von der Heydt R.,, Peterhans E., and Baumgartner G. (1984). "Illusory contours and cortical neuron responses", Science 224, 12601262.
168. Wagemans J.,, Elder J. H.,, Kubovy M.,, Palmer S. E.,, Peterson M. A.,, Singh M., and von der Heydt R. (2012a). "A century of Gestalt psychology in visual perception I. Perceptual grouping and figure–ground organization", Psychol. Bull. 138, 11721217.
169. Wagemans J.,, Feldman J.,, Gepshtein S.,, Kimchi R.,, Pomerantz J. R.,, van der Helm P. A., and van Leeuwen C. (2012b). "A century of Gestalt psychology in visual perception II. Conceptual and theoretical foundations", Psychol. Bull. 138, 12181252.
170. Wallach H. (1948). "Brightness constancy and the nature of achromatic colors", J. Exp. Psychol. 38, 310324.
171. Wallach H. (1976). On perception , Quadrangle/The New Your Times Book Co., New York, NY, USA.
172. Williams L. R., and Jacobs D. W. (1997). "Stochastic completion fields: A neural model of illusory contour shape and salience", Neural Comput. 9, 837858.
173. Zavagno D. (1999). "Some new luminance-gradient effects", Perception 28, 835838.
174. Zavagno D.,, Annan V., and Caputo G. (2004). "The problem of being White: Texting the highest luminance rule", Vision 16, 149159.
175. Zeki S. (1999). Inner Vision: An Exploration of Art and the Brain . Oxford University Press, Oxford, UK.

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation