Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The Influence of tree size and Microenvironmental changes on the wood Anatomy of Roupala Rhombifolia

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

We analysed how variation in microenvironmental conditions and stem size affects the wood anatomy of Roupala rhombifolia in three contrasting habitats in the same study area: open field, hilltop forest and riparian forest. The wood anatomy features analysed were: vessel area and density, vessel element length, fibre length, and ray width and height. Vegetation cover and soil attributes were also quantified and integrated into the analyses. Separate analyses were performed on i) raw anatomical data and ii) residuals from linear fits between wood anatomical features and plant height and stem diameter. Raw data showed a clear difference between specimens from riparian forest and open fields, which represented the most mesic and xeric anatomical features respectively. After residual extraction to correct size-related variation, only fibre length and vessel area differed between habitats. Vessel areas in riparian forest differed from those in hilltop forest, but were similar to those in open fields. This result can be explained when vegetation cover and soil are considered together. While open field and hilltop forest have similar soils and lower moisture availability when compared to riparian forest, water demand in open fields is lower, presumably resulting in higher water availability.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation