Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Fire influence on Pinus halepensis: wood responses close and far from the scars

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

Tree rings provide information about environmental change through recording stress events, such as fires, that can affect their growth. The aim of this study was to investigate wood growth reactions in Pinus halepensis Mill. trees subjected to wildfires, by analysing anatomical traits and carbon and oxygen isotope composition. The study area was Southern France where two sites were selected: one subjected to fires in the last 50 years, the other characterised by comparable environmental conditions although not affected by fire events (control site). We analysed whether wood growth depends on the tangential distance between developing xylem cells and the limit where the cambium was directly damaged by fire. In the burnt site, thick wood sections, including fire-scar, were taken from surviving plants. Digital photo-micrographs were analysed to measure early- and latewood width, wood density, and tracheid size. Anatomical and isotopic traits were analysed in two series of tree rings (5 rings before and 5 after the fire) selected at different positions along the circumference (close or far from the scar). Anatomical and isotopic traits were quantified also on tree rings of the same years from cored trees growing at the control site. Results showed different wood reaction tendencies depending on the distance from the scar. The comparison between plants from the two sites allowed to exclude possible climate interference.Our results are discussed in terms of two kinds of growth reactions: the local need to promptly compartmentalise the scarred cambial zone and sapwood after fire, and the general growth perturbations due to tree reaction to crown scorch during fire. Anatomical results, combined with dendrochronological and isotopic analysis, could provide an efficient way to distinguish between direct growth reactions due to heat-related damage on cambium and indirect outcomes related to defoliation.

Affiliations: 1: Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università 100, I-80055 Portici (NA), Italy; 2: Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (Di.S.T.A.Bi.F), Seconda Università di Napoli, via Vivaldi 43, I-81100 Caserta, Italy


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation