Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Anatomical, Chemical and Mechanical Properties of Fast-Growing Populus × Euramericana cv. ‘74/76’

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

The anatomical characteristics, chemical composition, and physical and mechanical properties of fast-growing Populus × euramericana cv. ‘74/76’ juvenile wood were investigated. Four- to five-year-old clonal plantation trees were harvested from two different experimental sites in the suburbs of Beijing. The Shunyi site had black alkali soil with a planting density of 4 × 6 m and the Miyun site had sandy loam soil with a planting density of 3 × 5 m. The test results showed that the poplar trees from the two sites were both fast growing, with poplar at Shunyi growing faster than at Miyun. There were no significant differences in wood properties between trees grown at the two sites. Fiber length at breast height varied from 872 to 1300 μm between growth rings, average fiber width varied from 21.0 to 25.5 μm and double wall thickness varied from 5.0 to 6.6 μm. Average cellulose, lignin and hemicellulose contents in the samples were 48.9%, 25.4%, and 18.8%, respectively. MFA was higher in the first two growth rings (20–25°), and then decreased rapidly to 12° close to the bark. The average air-dry density at breast height was 401 kg/m3 while the average MOE at breast height was 9.3 GPa. The trees showed large growth rates in both height and stem diameter during the growing season. However, wood properties of the juvenile poplar appeared to be similar to those of poplars with a slower growth rate.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation