Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Immunocytochemical studies of axial resin canals. II. Localization of non-cellulosic polysaccharides in epithelium and subsidiary cells of Scots pine

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

Axial resin canals in wood are distinguished into two types based on the morphology of epithelial cells; resin canals with narrow canals and thick-walled epithelial cells (Type I), and resin canals with wide canals and thin-walled epithelial cells (Type II). Following studies on Norway spruce (Type I), the distribution of non-cellulosic polysaccharides in axial resin canals of Scots pine (Type II) is reported here using cytochemical and immunocytochemical methods. The distribution of (1→4)-β-galactan (LM5), (1→5)-α-arabinan (LM6), homogalacturonan (LM19, LM20), xyloglucan (LM15), xylan (LM10, LM11) and mannan (LM21, LM22) epitopes were examined. Axial resin canal complexes in the xylem were composed of canal, epithelium and subsidiary cells (parenchyma and strand tracheids). Strand tracheids were absent in axial resin canals in the phloem. Strand tracheids showed a completely different ultrastructure and chemistry from normal mature tracheids and other types of axial resin canal cells. Immunolocalization of non-cellulosic polysaccharides in axial resin canals showed an overall similar cell wall composition in epithelial cells and subsidiary parenchyma between the xylem and phloem. All types of axial resin canal cells in both xylem and phloem contained homogalacturonan (HG), rhamnogalacturonan-I (RG-I) and xyloglucan with a high variation in amount and chemical structure depending on cell wall region and between cell types. In particular, epithelial cell walls facing the canal showed significant differences in HG distribution from other epithelial cell wall regions. No xylan and mannan epitopes were detected in any of axial resin canal cells. Together, our results suggest that the chemistry of axial resin canal cells in Scots pine may be highly compartmentalized depending on functional differences between both cell types and cell wall regions.

Affiliations: 1: Wood Science, Department of Forest Products, Swedish University of Agricultural Sciences, P.O. Box 7008, SE-750 07 Uppsala, Sweden


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation