Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

TREE-RING FEATURES: INDICATORS OF EXTREME EVENT IMPACTS

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

Wood anatomical features may be visible on the microscopic as well as on the macroscopic scale. While the former can often be quantified by detailed wood anatomical analyses, the latter are often treated as qualitative features or as binary variables (present/absent). Macroscopic tree-ring features can be quantified in terms of frequency, intensity, or classified according to their position within a tree ring, like intra-annual density variations (IADFs) in conifers or frost rings in earlywood or latewood. Although some of these tree-ring features, like e.g. missing rings or IADFs are often seen as anomalies, hampering dendrochronologists to perform proper crossdating of tree-ring series, many of these properties are formed under extreme environmental stress or heavy impact, and could mark these extreme events by the manifestation in the wood anatomical structures throughout the lifespan of trees. The described tree-ring features form discrete time-series of extreme events. For example, flood rings may be marked by lunar-shaped earlywood vessels or enlarged latewood vessels in ring-porous oaks. White earlywood rings and light rings indicate reduced cell wall thickness and lignification occurring in very cold years. Frost rings result from cambial cell death during abrupt cooling events in the growing season. Missing rings and IADFs are mainly caused by drought events. Characteristic variations in earlywood vessel size, shape, or number in ring-porous oak species are markers for flood events, defoliation, heat stress, or drought. Traumatic resin ducts may be triggered by a range of biotic or environmental stressors, including wounding, fires or mechanical factors. Reaction wood is indicative of mechanical stress, often related to geomorphic events. In many cases anatomical responses are unspecific and may be caused by different stressors or extreme events. Additionally, the sensitivity of trees to form such features may vary between species, or between life stages within one species. We critically evaluate the indicative value of different wood anatomical tree-ring features for environmental reconstructions.

Affiliations: 1: Institute of Geography achim.braeuning@fau.de ; 2: Wood Biology Service ; 3: Department of Plant Pathology and Chemistry ; 4: Departamento de Botánica ; 5: Forest Research Institute ; 6: Swiss Federal Research Institute WSL

Loading

Full text loading...

/content/journals/10.1163/22941932-20160131
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/22941932-20160131
Loading

Article metrics loading...

/content/journals/10.1163/22941932-20160131
2016-07-07
2017-10-17

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation