Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Structure and ontogeny of the fissured stems of Callaeum (Malpighiaceae)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

Stem ontogeny and structure of two neotropical twining vines of the genus Callaeum are described. Secondary growth in Callaeum begins with a typical regular cambium that gradually becomes lobed as a result of variation in xylem and phloem production rates in certain portions of the stem aligned with stem orthostichies. As development progresses, lignified ray cells of the initially formed secondary xylem detach on one side from the adjacent tissues, forming a natural fracture that induces the proliferation of both ray and axial nonlignified parenchyma. At the same time, parenchyma proliferation takes place around the pith margin and generates a ring of radially arranged parenchyma cells. The parenchyma generated in this process (here termed disruptive parenchyma) keeps dividing throughout stem development. As growth continues, the parenchyma finally cleaves the lignified axial parts of the vascular system into several isolated fragments of different sizes. Each fragment consists of xylem, phloem and vascular cambium and is immersed in a ground matrix of disruptive parenchyma. The cambium present in each fragment divides anticlinally to almost encircle each entire fragment and maintains its regular activity by producing xylem to the centre of the fragment and phloem to the periphery. Additionally, new cambia arise within the disruptive parenchyma and produce xylem and phloem in various polarities, such as xylem to the inside and phloem to the outside of the stem, or perpendicularly to the original cambium. Unlike the very distinctive stem anatomical architecture resulting from this cambial variant in Callaeum, its secondary xylem and phloem exhibit features typical of lianas. These features include very wide conducting cells, abundant axial parenchyma, high and heterocellular rays and gelatinous fibres.

Affiliations: 1: Cátedra de Morfología Vegetal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata cabanillaspablo@gmail.com ; 2: Laboratório de Anatomia Vegetal, Departamento de Botânica, Universidade de São Paulo marcelorpace@yahoo.com.br ; 3: Laboratório de Anatomia Vegetal, Departamento de Botânica, Universidade de São Paulo

Loading

Full text loading...

/content/journals/10.1163/22941932-20170156
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/22941932-20170156
Loading

Article metrics loading...

/content/journals/10.1163/22941932-20170156
2017-02-13
2018-10-22

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation