Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Full Access Structure and formation of phellem of Betula maximowicziana

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Structure and formation of phellem of Betula maximowicziana

  • HTML
  • PDF
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

Betula species have phellems with distinctive features such as stratification into thin paper-like layers, which are easily split in the tangential direction, and linear lenticels. We aimed to clarify the structure and development of the characteristic phellems of B. maximowicziana. In a normal periderm, phellem, phellogen, and phelloderm consist of tangentially elongated cells that are arranged in radial files. The phellem consists of layers of 1.4 ± 0.5 cells thick of very thin-walled phellem cells alternating with layers of 7.1 ± 1.5 thick-walled phellem cells. Seasonal sampling showed that the former and the latter were formed in the early and middle-to-late stages of the growing period, respectively. In lenticels, filling tissues alternated with closing layers. Most cells were collapsed and loosely packed in the filling tissue while all cells were intact and arranged in radial files in the closing layers. The filling tissue cells had unique walls that appeared to be easily deformed. Each annual increment of phellem in Betula is composed of a thin-walled cell layer (early phellem) and a thicker layer of thick-walled cells (late phellem). It is likely that the combination of filling tissue and closing layer in lenticels helps to perform the dual functions of gas exchange and protection, and that the collapse of the cells in filling tissue effectively contributes to gas permeability.

Affiliations: 1: 1Graduate School of Agriculture ; 2: 2Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan

Betula species have phellems with distinctive features such as stratification into thin paper-like layers, which are easily split in the tangential direction, and linear lenticels. We aimed to clarify the structure and development of the characteristic phellems of B. maximowicziana. In a normal periderm, phellem, phellogen, and phelloderm consist of tangentially elongated cells that are arranged in radial files. The phellem consists of layers of 1.4 ± 0.5 cells thick of very thin-walled phellem cells alternating with layers of 7.1 ± 1.5 thick-walled phellem cells. Seasonal sampling showed that the former and the latter were formed in the early and middle-to-late stages of the growing period, respectively. In lenticels, filling tissues alternated with closing layers. Most cells were collapsed and loosely packed in the filling tissue while all cells were intact and arranged in radial files in the closing layers. The filling tissue cells had unique walls that appeared to be easily deformed. Each annual increment of phellem in Betula is composed of a thin-walled cell layer (early phellem) and a thicker layer of thick-walled cells (late phellem). It is likely that the combination of filling tissue and closing layer in lenticels helps to perform the dual functions of gas exchange and protection, and that the collapse of the cells in filling tissue effectively contributes to gas permeability.

Loading

Full text loading...

/deliver/journals/22941932/39/01/22941932_039_01_s003_text.html?itemId=/content/journals/10.1163/22941932-20170186&mimeType=html&fmt=ahah
/content/journals/10.1163/22941932-20170186
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/22941932-20170186
Loading
Loading

Article metrics loading...

/content/journals/10.1163/22941932-20170186
2018-02-20
2018-06-21

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation