Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Influence of Microfibril angle on within-tree variations in the Mechanical properties of chinese fir (Cunninghamia Lanceolata)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

Radial variations in microfibril angle (MFA) and their effect on the mechanical properties of plantation-grown Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) were investigated with the aim of achieving an effective utilization of the wood. Correlations between MFA and mechanical properties, including longitudinal modulus of elasticity (MOEL), static bending strength (MOR) and compression strength parallel-to-the-grain (CS), were analyzed for predicting the quality of timber. The results indicated that MFA had a greater variation in juvenile wood than in mature wood. The biggest change occurred close to the pith in Chinese fir. The outer-rings (rings 9–30 from the pith) have a relatively low MFA, together with high mechanical properties and high density, when compared with the inner-rings (rings 1–8 from the pith). The MFA had significant negative curvilinear correlations with all the mechanical properties (MOEL, MOR and CS) of Chinese fir, with the value of r2 being 0.88, 0.69 and 0.74 respectively. The correlation between the MFA and basic density (BD) was strong in certain consecutive rings (rings 5–30 from the pith), but this did not apply across the whole billet, i.e. from the pith to the bark.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation