Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Development of Intra- and Interxylary Secondary Phloem in Coccinia indica (Cucurbitaceae)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

Stem anatomy and the development of intraxylary phloem were investigated in six to eight years old Coccinia indica L. (Cucurbitaceae). Secondary growth in the stems was achieved by the normal cambial activity. In the innermost part of the thicker stems, xylem parenchyma and pith cells dedifferentiated into meristematic cells at several points. In some of the wider rays, ray cells dedifferentiate and produce secondary xylem and phloem with different orientations and sometimes a complete bicollateral vascular bundle. The inner cambial segments of the bicollateral vascular bundle (of primary growth) maintained radial arrangement even in the mature stems but in most places the cambia were either inactive or showed very few cell divisions. Concomitant with the obliteration and collapse of inner phloem (of bicollateral vascular bundles), parenchyma cells encircling the phloem became meristematic forming a circular sheath of internal cambia. These internal cambia produce only intraxylary secondary phloem centripetally and do not produce any secondary xylem. In the stem, secondary xylem consisted mainly of axial parenchyma, small strands of thick-walled xylem derivatives, i.e. vessel elements and fibres embedded in parenchymatous ground mass, wide and tall rays along with exceptionally wide vessels characteristic of lianas. In thick stems, the axial parenchyma de-differentiated into meristem, which later re-differentiated into interxylary phloem. Fibre dimorphism and pseudo-vestured pits in the vessels are also reported.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation