Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Wood anatomy of Cussonia and Seemannaralia (Araliaceae) with systematic and ecological implications

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

The wood structure of two related African genera, Cussonia Thunb. (15 of 21 species) and the monotypic Seemannaralia R.Vig. (Araliaceae) is examined. The considerable diversity in wood anatomical characters within these taxa is mostly related to environmental factors; taxonomic groupings or phylogenetic relationships seem to be less important. The shortening of vessel elements and fibres, an increase in vessel number per group, a decrease in vessel diameter and a reduction in the number of bars of perforation plates, are associated with the more temperat species. The changes in vessel grouping show a significant correlation with rainfall. The placement of the simple-leaved Cussonia species in the subgenus Protocussonia and the isolated position of C. paniculata Eckl. & Zeyh., the only member of the subgenus Paniculatae, are supported. Many Cussonia species share a very low fibre to vessel element length ratio. Despite the basal position of Seemannaralia relative to Cussonia revealed by molecular data (Plunkett et al. 2004), its wood structure is more specialised in terms of the Baileyan major trends in wood evolution. This discrepancy may be the effect of a long-term adaptation of tropical ancestors of Seemannaralia to drier biomes.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation