Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Anatomy and Mechanical and Hydraulic Needs of Woody Climbers Contrasted with Subshrubs on the Island of Cyprus

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

Climbers and self-supporting woody plants have different constraints on their stems. Although plants of both growth forms need wood that functions mechanically and hydraulically, climbers have a lower need for mechanical self-support and an elevated need for hydraulic conductance to enable longer-distance water transport. We sampled all the woody climbers (10 species) and most of the woody subshrubs (25 species) of the island of Cyprus in the eastern part of the Mediterranean, to characterize their vessel and fiber anatomies relative to hydraulic and mechanical function. Consistent with their lower need for self-support, on average the climbers had lower wood density than did the subshrubs (0.44 g/cm3 ± 0.15 vs. 0.59 g/cm3 ± 0.20, means ± s.d.) and had a lower proportion of their cross section devoted to fibers (29% ± 11 vs. 49% ± 15). Consistent with climbers’ need for higher hydraulic conductance and total plant height, climbers had vessel sizes and frequencies closer to the theoretical packing limit than did subshrubs. Lastly, we grouped species within a growth form by site water availability (dry vs. wet site), site temperature (cold vs. hot site), site water equability (low vs. high), and xylem ring porosity (ring porous, semi-ring porous or diffuse porous). Climbers had different vessel lumen diameters or vessel frequencies for six of these eight groupings, whereas subshrubs showed no such differences, illustrating the wide variation in climber wood structure compared to the relatively conservative anatomy of the subshrubs.

Loading

Full text loading...

/content/journals/10.1163/22941932-90000100
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/22941932-90000100
Loading

Article metrics loading...

/content/journals/10.1163/22941932-90000100
2012-01-01
2016-12-06

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation