Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Influence of Red Alder Competition on Cambial Phenology and Latewood Formation in Douglas-Fir

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

To better understand the influence of competition on wood formation and wood quality in Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco), patterns of cambial growth and latewood production were examined for one growing season in 15-year-old plantations with similar densities but differing Douglas-fir/red alder (Alnus rubra Bong.) ratios. The treatments consisted of plots having different proportions of Douglas-fir vs. red alder, different red alder planting dates, and one of two total planting densities. Cambial growth was tracked using the pinning method. Cambial activity in most trees began between May 12 and May 23, and ended between August 27 and September 10. Mean date of transition to latewood was July 6. In the treatment with the highest mean red alder basal area, Douglas- fir trees began radial growth later and ended earlier in the year than those in pure Douglas-fir stands. There was no evident effect of competition from red alder on the duration of cambial activity in treatments with intermediate to low red alder basal areas. In all treatments, the duration of radial growth was shorter in smaller-diameter trees. Early transition to latewood production was also associated with higher red alder basal area. Percent latewood was unaffected by treatment, but it was dependent on the date of a tree's transition to latewood production.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation