Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Visualisation of Metals in Pine Treated with Preservative Containing Copper and Iron Nanoparticles

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

In this study we compared the ability of conventional and field-emission scanning-electron-microscopy (FESEM) and energy-dispersive analysis of X-rays (EDX) to visualise and map inorganic nano and microparticles in Southern pine (Pinus sp.) treated with an aqueous dispersion of micronised copper-carbonate and iron oxide. Conventional SEM-EDX was able to detect areas of the wood microstructure that contained higher concentrations of copper and iron, but EDX maps were affected by drift and specimens suffered beam damage. The high brightness of the FESEM's electron beam at low accelerating voltages reduced beam damage and helped when mapping the distribution of copper and iron particles. The clarity of EDX maps was further improved by using drift-correction software and by mapping low energy X-rays. FESEM-EDX was able to resolve individual copper and iron microparticles. We conclude that FESEM-EDX shows promise as a means of resolving and mapping the distribution of inorganic metal particles in wood and that this may lead to greater use of the technology as interest in the treatment of wood with inorganic nano and microparticles grows.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation